Cargando…
Fusion of KATZ measure and space projection to fast probe potential lncRNA-disease associations in bipartite graphs
It is well known that numerous long noncoding RNAs (lncRNAs) closely relate to the physiological and pathological processes of human diseases and can serves as potential biomarkers. Therefore, lncRNA-disease associations that are identified by computational methods as the targeted candidates reduce...
Autores principales: | Zhang, Yi, Chen, Min, Huang, Li, Xie, Xiaolan, Li, Xin, Jin, Hong, Wang, Xiaohua, Wei, Hanyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608294/ https://www.ncbi.nlm.nih.gov/pubmed/34807960 http://dx.doi.org/10.1371/journal.pone.0260329 |
Ejemplares similares
-
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
KATZLDA: KATZ measure for the lncRNA-disease association prediction
por: Chen, Xing
Publicado: (2015) -
A Novel Approach Based on Bipartite Network Recommendation and KATZ Model to Predict Potential Micro-Disease Associations
por: Li, Shiru, et al.
Publicado: (2019) -
Novel link prediction for large-scale miRNA-lncRNA interaction network in a bipartite graph
por: Huang, Zhi-An, et al.
Publicado: (2018) -
Vertex Deletion into Bipartite Permutation Graphs
por: Bożyk, Łukasz, et al.
Publicado: (2022)