Cargando…
Testing biological network motif significance with exponential random graph models
Analysis of the structure of biological networks often uses statistical tests to establish the over-representation of motifs, which are thought to be important building blocks of such networks, related to their biological functions. However, there is disagreement as to the statistical significance o...
Autores principales: | Stivala, Alex, Lomi, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608783/ https://www.ncbi.nlm.nih.gov/pubmed/34841042 http://dx.doi.org/10.1007/s41109-021-00434-y |
Ejemplares similares
-
Exponential random graph model parameter estimation for very large directed networks
por: Stivala, Alex, et al.
Publicado: (2020) -
Exponential Random Graph Modeling for Complex Brain Networks
por: Simpson, Sean L., et al.
Publicado: (2011) -
Analysis of the global trade network using exponential random graph models
por: Setayesh, Amin, et al.
Publicado: (2022) -
Statistical Inference for Valued-Edge Networks: The Generalized Exponential Random Graph Model
por: Desmarais, Bruce A., et al.
Publicado: (2012) -
Fast Maximum Likelihood Estimation via Equilibrium Expectation for Large Network Data
por: Byshkin, Maksym, et al.
Publicado: (2018)