Cargando…
Structural optimization of silicon thin film for thermoelectric materials
The method to optimize nanostructures of silicon thin films as thermoelectric materials is developed. The simulated annealing method is utilized for predicting the optimized structure. The mean free path and thermal conductivity of thin films, which are the objective function of optimization, is eva...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608789/ https://www.ncbi.nlm.nih.gov/pubmed/34811398 http://dx.doi.org/10.1038/s41598-021-01855-6 |
Sumario: | The method to optimize nanostructures of silicon thin films as thermoelectric materials is developed. The simulated annealing method is utilized for predicting the optimized structure. The mean free path and thermal conductivity of thin films, which are the objective function of optimization, is evaluated by using phonon transport simulations and lattice dynamics calculations. In small systems composed of square lattices, the simulated annealing method successfully predicts optimized structure corroborated by an exhaustive search. This fact indicates that the simulated annealing method is an effective tool for optimizing nanostructured thin films as thermoelectric materials. |
---|