Cargando…
CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)
Better models to identify individuals at low risk of ventricular arrhythmia (VA) are needed for implantable cardioverter-defibrillator (ICD) candidates to mitigate the risk of ICD-related complications. We designed the CERTAINTY study (CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmi...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608832/ https://www.ncbi.nlm.nih.gov/pubmed/34811411 http://dx.doi.org/10.1038/s41598-021-02111-7 |
_version_ | 1784602814210637824 |
---|---|
author | Krebs, Julian Mansi, Tommaso Delingette, Hervé Lou, Bin Lima, Joao A. C. Tao, Susumu Ciuffo, Luisa A. Norgard, Sanaz Butcher, Barbara Lee, Wei H. Chamera, Ela Dickfeld, Timm-Michael Stillabower, Michael Marine, Joseph E. Weiss, Robert G. Tomaselli, Gordon F. Halperin, Henry Wu, Katherine C. Ashikaga, Hiroshi |
author_facet | Krebs, Julian Mansi, Tommaso Delingette, Hervé Lou, Bin Lima, Joao A. C. Tao, Susumu Ciuffo, Luisa A. Norgard, Sanaz Butcher, Barbara Lee, Wei H. Chamera, Ela Dickfeld, Timm-Michael Stillabower, Michael Marine, Joseph E. Weiss, Robert G. Tomaselli, Gordon F. Halperin, Henry Wu, Katherine C. Ashikaga, Hiroshi |
author_sort | Krebs, Julian |
collection | PubMed |
description | Better models to identify individuals at low risk of ventricular arrhythmia (VA) are needed for implantable cardioverter-defibrillator (ICD) candidates to mitigate the risk of ICD-related complications. We designed the CERTAINTY study (CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia) with deep learning for VA risk prediction from cine cardiac magnetic resonance (CMR). Using a training cohort of primary prevention ICD recipients (n = 350, 97 women, median age 59 years, 178 ischemic cardiomyopathy) who underwent CMR immediately prior to ICD implantation, we developed two neural networks: Cine Fingerprint Extractor and Risk Predictor. The former extracts cardiac structure and function features from cine CMR in a form of cine fingerprint in a fully unsupervised fashion, and the latter takes in the cine fingerprint and outputs disease outcomes as a cine risk score. Patients with VA (n = 96) had a significantly higher cine risk score than those without VA. Multivariate analysis showed that the cine risk score was significantly associated with VA after adjusting for clinical characteristics, cardiac structure and function including CMR-derived scar extent. These findings indicate that non-contrast, cine CMR inherently contains features to improve VA risk prediction in primary prevention ICD candidates. We solicit participation from multiple centers for external validation. |
format | Online Article Text |
id | pubmed-8608832 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-86088322021-11-24 CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY) Krebs, Julian Mansi, Tommaso Delingette, Hervé Lou, Bin Lima, Joao A. C. Tao, Susumu Ciuffo, Luisa A. Norgard, Sanaz Butcher, Barbara Lee, Wei H. Chamera, Ela Dickfeld, Timm-Michael Stillabower, Michael Marine, Joseph E. Weiss, Robert G. Tomaselli, Gordon F. Halperin, Henry Wu, Katherine C. Ashikaga, Hiroshi Sci Rep Article Better models to identify individuals at low risk of ventricular arrhythmia (VA) are needed for implantable cardioverter-defibrillator (ICD) candidates to mitigate the risk of ICD-related complications. We designed the CERTAINTY study (CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia) with deep learning for VA risk prediction from cine cardiac magnetic resonance (CMR). Using a training cohort of primary prevention ICD recipients (n = 350, 97 women, median age 59 years, 178 ischemic cardiomyopathy) who underwent CMR immediately prior to ICD implantation, we developed two neural networks: Cine Fingerprint Extractor and Risk Predictor. The former extracts cardiac structure and function features from cine CMR in a form of cine fingerprint in a fully unsupervised fashion, and the latter takes in the cine fingerprint and outputs disease outcomes as a cine risk score. Patients with VA (n = 96) had a significantly higher cine risk score than those without VA. Multivariate analysis showed that the cine risk score was significantly associated with VA after adjusting for clinical characteristics, cardiac structure and function including CMR-derived scar extent. These findings indicate that non-contrast, cine CMR inherently contains features to improve VA risk prediction in primary prevention ICD candidates. We solicit participation from multiple centers for external validation. Nature Publishing Group UK 2021-11-22 /pmc/articles/PMC8608832/ /pubmed/34811411 http://dx.doi.org/10.1038/s41598-021-02111-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Krebs, Julian Mansi, Tommaso Delingette, Hervé Lou, Bin Lima, Joao A. C. Tao, Susumu Ciuffo, Luisa A. Norgard, Sanaz Butcher, Barbara Lee, Wei H. Chamera, Ela Dickfeld, Timm-Michael Stillabower, Michael Marine, Joseph E. Weiss, Robert G. Tomaselli, Gordon F. Halperin, Henry Wu, Katherine C. Ashikaga, Hiroshi CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY) |
title | CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY) |
title_full | CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY) |
title_fullStr | CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY) |
title_full_unstemmed | CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY) |
title_short | CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY) |
title_sort | cine cardiac magnetic resonance to predict ventricular arrhythmia (certainty) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608832/ https://www.ncbi.nlm.nih.gov/pubmed/34811411 http://dx.doi.org/10.1038/s41598-021-02111-7 |
work_keys_str_mv | AT krebsjulian cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT mansitommaso cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT delingetteherve cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT loubin cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT limajoaoac cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT taosusumu cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT ciuffoluisaa cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT norgardsanaz cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT butcherbarbara cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT leeweih cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT chameraela cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT dickfeldtimmmichael cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT stillabowermichael cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT marinejosephe cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT weissrobertg cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT tomaselligordonf cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT halperinhenry cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT wukatherinec cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty AT ashikagahiroshi cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty |