Cargando…

CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)

Better models to identify individuals at low risk of ventricular arrhythmia (VA) are needed for implantable cardioverter-defibrillator (ICD) candidates to mitigate the risk of ICD-related complications. We designed the CERTAINTY study (CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmi...

Descripción completa

Detalles Bibliográficos
Autores principales: Krebs, Julian, Mansi, Tommaso, Delingette, Hervé, Lou, Bin, Lima, Joao A. C., Tao, Susumu, Ciuffo, Luisa A., Norgard, Sanaz, Butcher, Barbara, Lee, Wei H., Chamera, Ela, Dickfeld, Timm-Michael, Stillabower, Michael, Marine, Joseph E., Weiss, Robert G., Tomaselli, Gordon F., Halperin, Henry, Wu, Katherine C., Ashikaga, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608832/
https://www.ncbi.nlm.nih.gov/pubmed/34811411
http://dx.doi.org/10.1038/s41598-021-02111-7
_version_ 1784602814210637824
author Krebs, Julian
Mansi, Tommaso
Delingette, Hervé
Lou, Bin
Lima, Joao A. C.
Tao, Susumu
Ciuffo, Luisa A.
Norgard, Sanaz
Butcher, Barbara
Lee, Wei H.
Chamera, Ela
Dickfeld, Timm-Michael
Stillabower, Michael
Marine, Joseph E.
Weiss, Robert G.
Tomaselli, Gordon F.
Halperin, Henry
Wu, Katherine C.
Ashikaga, Hiroshi
author_facet Krebs, Julian
Mansi, Tommaso
Delingette, Hervé
Lou, Bin
Lima, Joao A. C.
Tao, Susumu
Ciuffo, Luisa A.
Norgard, Sanaz
Butcher, Barbara
Lee, Wei H.
Chamera, Ela
Dickfeld, Timm-Michael
Stillabower, Michael
Marine, Joseph E.
Weiss, Robert G.
Tomaselli, Gordon F.
Halperin, Henry
Wu, Katherine C.
Ashikaga, Hiroshi
author_sort Krebs, Julian
collection PubMed
description Better models to identify individuals at low risk of ventricular arrhythmia (VA) are needed for implantable cardioverter-defibrillator (ICD) candidates to mitigate the risk of ICD-related complications. We designed the CERTAINTY study (CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia) with deep learning for VA risk prediction from cine cardiac magnetic resonance (CMR). Using a training cohort of primary prevention ICD recipients (n = 350, 97 women, median age 59 years, 178 ischemic cardiomyopathy) who underwent CMR immediately prior to ICD implantation, we developed two neural networks: Cine Fingerprint Extractor and Risk Predictor. The former extracts cardiac structure and function features from cine CMR in a form of cine fingerprint in a fully unsupervised fashion, and the latter takes in the cine fingerprint and outputs disease outcomes as a cine risk score. Patients with VA (n = 96) had a significantly higher cine risk score than those without VA. Multivariate analysis showed that the cine risk score was significantly associated with VA after adjusting for clinical characteristics, cardiac structure and function including CMR-derived scar extent. These findings indicate that non-contrast, cine CMR inherently contains features to improve VA risk prediction in primary prevention ICD candidates. We solicit participation from multiple centers for external validation.
format Online
Article
Text
id pubmed-8608832
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-86088322021-11-24 CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY) Krebs, Julian Mansi, Tommaso Delingette, Hervé Lou, Bin Lima, Joao A. C. Tao, Susumu Ciuffo, Luisa A. Norgard, Sanaz Butcher, Barbara Lee, Wei H. Chamera, Ela Dickfeld, Timm-Michael Stillabower, Michael Marine, Joseph E. Weiss, Robert G. Tomaselli, Gordon F. Halperin, Henry Wu, Katherine C. Ashikaga, Hiroshi Sci Rep Article Better models to identify individuals at low risk of ventricular arrhythmia (VA) are needed for implantable cardioverter-defibrillator (ICD) candidates to mitigate the risk of ICD-related complications. We designed the CERTAINTY study (CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia) with deep learning for VA risk prediction from cine cardiac magnetic resonance (CMR). Using a training cohort of primary prevention ICD recipients (n = 350, 97 women, median age 59 years, 178 ischemic cardiomyopathy) who underwent CMR immediately prior to ICD implantation, we developed two neural networks: Cine Fingerprint Extractor and Risk Predictor. The former extracts cardiac structure and function features from cine CMR in a form of cine fingerprint in a fully unsupervised fashion, and the latter takes in the cine fingerprint and outputs disease outcomes as a cine risk score. Patients with VA (n = 96) had a significantly higher cine risk score than those without VA. Multivariate analysis showed that the cine risk score was significantly associated with VA after adjusting for clinical characteristics, cardiac structure and function including CMR-derived scar extent. These findings indicate that non-contrast, cine CMR inherently contains features to improve VA risk prediction in primary prevention ICD candidates. We solicit participation from multiple centers for external validation. Nature Publishing Group UK 2021-11-22 /pmc/articles/PMC8608832/ /pubmed/34811411 http://dx.doi.org/10.1038/s41598-021-02111-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Krebs, Julian
Mansi, Tommaso
Delingette, Hervé
Lou, Bin
Lima, Joao A. C.
Tao, Susumu
Ciuffo, Luisa A.
Norgard, Sanaz
Butcher, Barbara
Lee, Wei H.
Chamera, Ela
Dickfeld, Timm-Michael
Stillabower, Michael
Marine, Joseph E.
Weiss, Robert G.
Tomaselli, Gordon F.
Halperin, Henry
Wu, Katherine C.
Ashikaga, Hiroshi
CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)
title CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)
title_full CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)
title_fullStr CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)
title_full_unstemmed CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)
title_short CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY)
title_sort cine cardiac magnetic resonance to predict ventricular arrhythmia (certainty)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608832/
https://www.ncbi.nlm.nih.gov/pubmed/34811411
http://dx.doi.org/10.1038/s41598-021-02111-7
work_keys_str_mv AT krebsjulian cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT mansitommaso cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT delingetteherve cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT loubin cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT limajoaoac cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT taosusumu cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT ciuffoluisaa cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT norgardsanaz cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT butcherbarbara cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT leeweih cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT chameraela cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT dickfeldtimmmichael cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT stillabowermichael cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT marinejosephe cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT weissrobertg cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT tomaselligordonf cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT halperinhenry cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT wukatherinec cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty
AT ashikagahiroshi cinecardiacmagneticresonancetopredictventriculararrhythmiacertainty