Cargando…
RETRACTED ARTICLE: Down-regulation of microRNA-342-5p or Up-regulation of Wnt3a Inhibits Angiogenesis and Maintains Atherosclerotic Plaque Stability in Atherosclerosis Mice
Evidence has demonstrated that microRNA-342-5p (miR-342-5p) is implicated in atherosclerosis (AS), but little is known regarding its intrinsic regulatory mechanisms. Here, we aimed to explore the effect of miR-342-5p targeting Wnt3a on formation of vulnerable plaques and angiogenesis of AS. ApoE(−/−...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609054/ https://www.ncbi.nlm.nih.gov/pubmed/34807315 http://dx.doi.org/10.1186/s11671-021-03608-w |
Sumario: | Evidence has demonstrated that microRNA-342-5p (miR-342-5p) is implicated in atherosclerosis (AS), but little is known regarding its intrinsic regulatory mechanisms. Here, we aimed to explore the effect of miR-342-5p targeting Wnt3a on formation of vulnerable plaques and angiogenesis of AS. ApoE(−/−) mice were fed with high-fat feed for 16 w to replicate the AS vulnerable plaque model. miR-342-5p and Wnt3a expression in aortic tissues of AS were detected. The target relationship between miR-342-5p and Wnt3a was verified. Moreover, ApoE(−/−) mice were injected with miR-342-5p antagomir and overexpression-Wnt3a vector to test their functions in serum lipid levels, inflammatory and oxidative stress-related cytokines, aortic plaque stability and angiogenesis in plaque of AS mice. miR-342-5p expression was enhanced and Wnt3a expression was degraded in aortic tissues of AS mice and miR-342-5p directly targeted Wnt3a. Up-regulating Wnt3a or down-regulating miR-342-5p reduced blood lipid content, inflammatory and oxidative stress levels, the vulnerability of aortic tissue plaque and inhibited angiogenesis in aortic plaque of AS mice. Functional studies show that depleting miR-342-5p can stabilize aortic tissue plaque and reduce angiogenesis in plaque in AS mice via restoring Wnt3a. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s11671-021-03608-w. |
---|