Cargando…
Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study
BACKGROUND: Determining the status of molecular pathways and key mutations in colorectal cancer is crucial for optimal therapeutic decision making. We therefore aimed to develop a novel deep learning pipeline to predict the status of key molecular pathways and mutations from whole-slide images of ha...
Autores principales: | Bilal, Mohsin, Raza, Shan E Ahmed, Azam, Ayesha, Graham, Simon, Ilyas, Mohammad, Cree, Ian A, Snead, David, Minhas, Fayyaz, Rajpoot, Nasir M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609154/ https://www.ncbi.nlm.nih.gov/pubmed/34686474 http://dx.doi.org/10.1016/S2589-7500(21)00180-1 |
Ejemplares similares
-
Hyper-Stain Inspector: A Framework for Robust Registration and Localised Co-Expression Analysis of Multiple Whole-Slide Images of Serial Histology Sections
por: Trahearn, Nicholas, et al.
Publicado: (2017) -
AI-enabled routine H&E image based prognostic marker for early-stage luminal breast cancer
por: Wahab, Noorul, et al.
Publicado: (2023) -
Role of AI and digital pathology for colorectal immuno-oncology
por: Bilal, Mohsin, et al.
Publicado: (2022) -
WSIC: a Python package and command-line interface for fast whole slide image conversion
por: Pocock, Johnathan, et al.
Publicado: (2023) -
Screening of normal endoscopic large bowel biopsies with interpretable graph learning: a retrospective study
por: Graham, Simon, et al.
Publicado: (2023)