Cargando…

Filter made of cuprammonium regenerated cellulose for virus removal: a mini-review

In 1989, Asahi Kasei commercialized a porous hollow fiber membrane filter (Planova™) made of cuprammonium regenerated cellulose, making it possible for the first time in the world to “remove viruses from protein solutions by membrane filtration”. Planova has demonstrated its usefulness in separating...

Descripción completa

Detalles Bibliográficos
Autor principal: Ide, Shoichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609256/
https://www.ncbi.nlm.nih.gov/pubmed/34840442
http://dx.doi.org/10.1007/s10570-021-04319-2
Descripción
Sumario:In 1989, Asahi Kasei commercialized a porous hollow fiber membrane filter (Planova™) made of cuprammonium regenerated cellulose, making it possible for the first time in the world to “remove viruses from protein solutions by membrane filtration”. Planova has demonstrated its usefulness in separating proteins and viruses. Filters that remove viruses from protein solutions, i.e., virus removal filters (VFs), have become one of the critical modern technologies to assure viral safety of biological products. It has also become an indispensable technology for the future. The performance characteristics of VFs can be summarized in two points: 1) the virus removal performance increases as the virus diameter increases, and 2) the recovery rate of proteins with molecular weights greater than 10,000 exceeds the practical level. This paper outlines the emergence of VF and its essential roles in the purification process of biological products, requirements for VF, phase separation studies for cuprammonium cellulose solution, comparison between Planova and other regenerated cellulose flat membranes made from other cellulose solutions, and the development of Planova. The superior properties of Planova can be attributed to its highly interconnected three-dimensional network structure. Furthermore, future trends in the VF field, the subject of this review, are discussed.