Cargando…
Microchromosomes are building blocks of bird, reptile, and mammal chromosomes
Microchromosomes, once considered unimportant shreds of the chicken genome, are gene-rich elements with a high GC content and few transposable elements. Their origin has been debated for decades. We used cytological and whole-genome sequence comparisons, and chromosome conformation capture, to trace...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609325/ https://www.ncbi.nlm.nih.gov/pubmed/34725164 http://dx.doi.org/10.1073/pnas.2112494118 |
_version_ | 1784602904243470336 |
---|---|
author | Waters, Paul D. Patel, Hardip R. Ruiz-Herrera, Aurora Álvarez-González, Lucía Lister, Nicholas C. Simakov, Oleg Ezaz, Tariq Kaur, Parwinder Frere, Celine Grützner, Frank Georges, Arthur Graves, Jennifer A. Marshall |
author_facet | Waters, Paul D. Patel, Hardip R. Ruiz-Herrera, Aurora Álvarez-González, Lucía Lister, Nicholas C. Simakov, Oleg Ezaz, Tariq Kaur, Parwinder Frere, Celine Grützner, Frank Georges, Arthur Graves, Jennifer A. Marshall |
author_sort | Waters, Paul D. |
collection | PubMed |
description | Microchromosomes, once considered unimportant shreds of the chicken genome, are gene-rich elements with a high GC content and few transposable elements. Their origin has been debated for decades. We used cytological and whole-genome sequence comparisons, and chromosome conformation capture, to trace their origin and fate in genomes of reptiles, birds, and mammals. We find that microchromosomes as well as macrochromosomes are highly conserved across birds and share synteny with single small chromosomes of the chordate amphioxus, attesting to their origin as elements of an ancient animal genome. Turtles and squamates (snakes and lizards) share different subsets of ancestral microchromosomes, having independently lost microchromosomes by fusion with other microchromosomes or macrochromosomes. Patterns of fusions were quite different in different lineages. Cytological observations show that microchromosomes in all lineages are spatially separated into a central compartment at interphase and during mitosis and meiosis. This reflects higher interaction between microchromosomes than with macrochromosomes, as observed by chromosome conformation capture, and suggests some functional coherence. In highly rearranged genomes fused microchromosomes retain most ancestral characteristics, but these may erode over evolutionary time; surprisingly, de novo microchromosomes have rapidly adopted high interaction. Some chromosomes of early-branching monotreme mammals align to several bird microchromosomes, suggesting multiple microchromosome fusions in a mammalian ancestor. Subsequently, multiple rearrangements fueled the extraordinary karyotypic diversity of therian mammals. Thus, microchromosomes, far from being aberrant genetic elements, represent fundamental building blocks of amniote chromosomes, and it is mammals, rather than reptiles and birds, that are atypical. |
format | Online Article Text |
id | pubmed-8609325 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-86093252021-12-02 Microchromosomes are building blocks of bird, reptile, and mammal chromosomes Waters, Paul D. Patel, Hardip R. Ruiz-Herrera, Aurora Álvarez-González, Lucía Lister, Nicholas C. Simakov, Oleg Ezaz, Tariq Kaur, Parwinder Frere, Celine Grützner, Frank Georges, Arthur Graves, Jennifer A. Marshall Proc Natl Acad Sci U S A Biological Sciences Microchromosomes, once considered unimportant shreds of the chicken genome, are gene-rich elements with a high GC content and few transposable elements. Their origin has been debated for decades. We used cytological and whole-genome sequence comparisons, and chromosome conformation capture, to trace their origin and fate in genomes of reptiles, birds, and mammals. We find that microchromosomes as well as macrochromosomes are highly conserved across birds and share synteny with single small chromosomes of the chordate amphioxus, attesting to their origin as elements of an ancient animal genome. Turtles and squamates (snakes and lizards) share different subsets of ancestral microchromosomes, having independently lost microchromosomes by fusion with other microchromosomes or macrochromosomes. Patterns of fusions were quite different in different lineages. Cytological observations show that microchromosomes in all lineages are spatially separated into a central compartment at interphase and during mitosis and meiosis. This reflects higher interaction between microchromosomes than with macrochromosomes, as observed by chromosome conformation capture, and suggests some functional coherence. In highly rearranged genomes fused microchromosomes retain most ancestral characteristics, but these may erode over evolutionary time; surprisingly, de novo microchromosomes have rapidly adopted high interaction. Some chromosomes of early-branching monotreme mammals align to several bird microchromosomes, suggesting multiple microchromosome fusions in a mammalian ancestor. Subsequently, multiple rearrangements fueled the extraordinary karyotypic diversity of therian mammals. Thus, microchromosomes, far from being aberrant genetic elements, represent fundamental building blocks of amniote chromosomes, and it is mammals, rather than reptiles and birds, that are atypical. National Academy of Sciences 2021-11-01 2021-11-09 /pmc/articles/PMC8609325/ /pubmed/34725164 http://dx.doi.org/10.1073/pnas.2112494118 Text en Copyright © 2021 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Biological Sciences Waters, Paul D. Patel, Hardip R. Ruiz-Herrera, Aurora Álvarez-González, Lucía Lister, Nicholas C. Simakov, Oleg Ezaz, Tariq Kaur, Parwinder Frere, Celine Grützner, Frank Georges, Arthur Graves, Jennifer A. Marshall Microchromosomes are building blocks of bird, reptile, and mammal chromosomes |
title | Microchromosomes are building blocks of bird, reptile, and mammal chromosomes |
title_full | Microchromosomes are building blocks of bird, reptile, and mammal chromosomes |
title_fullStr | Microchromosomes are building blocks of bird, reptile, and mammal chromosomes |
title_full_unstemmed | Microchromosomes are building blocks of bird, reptile, and mammal chromosomes |
title_short | Microchromosomes are building blocks of bird, reptile, and mammal chromosomes |
title_sort | microchromosomes are building blocks of bird, reptile, and mammal chromosomes |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609325/ https://www.ncbi.nlm.nih.gov/pubmed/34725164 http://dx.doi.org/10.1073/pnas.2112494118 |
work_keys_str_mv | AT waterspauld microchromosomesarebuildingblocksofbirdreptileandmammalchromosomes AT patelhardipr microchromosomesarebuildingblocksofbirdreptileandmammalchromosomes AT ruizherreraaurora microchromosomesarebuildingblocksofbirdreptileandmammalchromosomes AT alvarezgonzalezlucia microchromosomesarebuildingblocksofbirdreptileandmammalchromosomes AT listernicholasc microchromosomesarebuildingblocksofbirdreptileandmammalchromosomes AT simakovoleg microchromosomesarebuildingblocksofbirdreptileandmammalchromosomes AT ezaztariq microchromosomesarebuildingblocksofbirdreptileandmammalchromosomes AT kaurparwinder microchromosomesarebuildingblocksofbirdreptileandmammalchromosomes AT frereceline microchromosomesarebuildingblocksofbirdreptileandmammalchromosomes AT grutznerfrank microchromosomesarebuildingblocksofbirdreptileandmammalchromosomes AT georgesarthur microchromosomesarebuildingblocksofbirdreptileandmammalchromosomes AT gravesjenniferamarshall microchromosomesarebuildingblocksofbirdreptileandmammalchromosomes |