Cargando…
The promise of energy-efficient battery-powered urban aircraft
Improvements in rechargeable batteries are enabling several electric urban air mobility (UAM) aircraft designs with up to 300 mi of range with payload equivalents of up to seven passengers. Novel UAM aircraft consume between 130 Wh/passenger-mi and ∼ 1,200 Wh/passenger-mi depending on the design and...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609345/ https://www.ncbi.nlm.nih.gov/pubmed/34728567 http://dx.doi.org/10.1073/pnas.2111164118 |
Sumario: | Improvements in rechargeable batteries are enabling several electric urban air mobility (UAM) aircraft designs with up to 300 mi of range with payload equivalents of up to seven passengers. Novel UAM aircraft consume between 130 Wh/passenger-mi and ∼ 1,200 Wh/passenger-mi depending on the design and utilization, compared to an expected consumption of over 220 Wh/passenger-mi and 1,000 Wh/passenger-mi for terrestrial electric vehicles and combustion engine vehicles, respectively. We also find that several UAM aircraft designs are approaching technological viability with current Li-ion batteries, based on the specific power and energy, while rechargeability and lifetime performance remain uncertain. These aspects highlight the technological readiness of a new segment of transportation. |
---|