Cargando…
Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies
Disulfide bond-bridging strategy has been extensively utilized to construct tumor specificity-responsive aliphatic prodrug nanoparticles (PNPs) for precise cancer therapy. Yet, there is no research shedding light on the impacts of the saturation and cis-trans configuration of aliphatic tails on the...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shenyang Pharmaceutical University
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609389/ https://www.ncbi.nlm.nih.gov/pubmed/34849169 http://dx.doi.org/10.1016/j.ajps.2021.02.001 |
_version_ | 1784602917483839488 |
---|---|
author | Wang, Yuequan Luo, Cong Zhou, Shuang Wang, Xinhui Zhang, Xuanbo Li, Shumeng Zhang, Shenwu Wang, Shuo Sun, Bingjun He, Zhonggui Sun, Jin |
author_facet | Wang, Yuequan Luo, Cong Zhou, Shuang Wang, Xinhui Zhang, Xuanbo Li, Shumeng Zhang, Shenwu Wang, Shuo Sun, Bingjun He, Zhonggui Sun, Jin |
author_sort | Wang, Yuequan |
collection | PubMed |
description | Disulfide bond-bridging strategy has been extensively utilized to construct tumor specificity-responsive aliphatic prodrug nanoparticles (PNPs) for precise cancer therapy. Yet, there is no research shedding light on the impacts of the saturation and cis-trans configuration of aliphatic tails on the self-assembly capacity of disulfide bond-linked prodrugs and the in vivo delivery fate of PNPs. Herein, five disulfide bond-linked docetaxel-fatty acid prodrugs are designed and synthesized by using stearic acid, elaidic acid, oleic acid, linoleic acid and linolenic acid as the aliphatic tails, respectively. Interestingly, the cis-trans configuration of aliphatic tails significantly influences the self-assembly features of prodrugs, and elaidic acid-linked prodrug with a trans double bond show poor self-assembly capacity. Although the aliphatic tails have almost no effect on the redox-sensitive drug release and cytotoxicity, different aliphatic tails significantly influence the chemical stability of prodrugs and the colloidal stability of PNPs, thus affecting the in vivo pharmacokinetics, biodistribution and antitumor efficacy of PNPs. Our findings illustrate how aliphatic tails affect the assembly characteristic of disulfide bond-linked aliphatic prodrugs and the in vivo delivery fate of PNPs, and thus provide theoretical basis for future development of disulfide bond-bridged aliphatic prodrugs. |
format | Online Article Text |
id | pubmed-8609389 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Shenyang Pharmaceutical University |
record_format | MEDLINE/PubMed |
spelling | pubmed-86093892021-11-29 Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies Wang, Yuequan Luo, Cong Zhou, Shuang Wang, Xinhui Zhang, Xuanbo Li, Shumeng Zhang, Shenwu Wang, Shuo Sun, Bingjun He, Zhonggui Sun, Jin Asian J Pharm Sci Original Research Paper Disulfide bond-bridging strategy has been extensively utilized to construct tumor specificity-responsive aliphatic prodrug nanoparticles (PNPs) for precise cancer therapy. Yet, there is no research shedding light on the impacts of the saturation and cis-trans configuration of aliphatic tails on the self-assembly capacity of disulfide bond-linked prodrugs and the in vivo delivery fate of PNPs. Herein, five disulfide bond-linked docetaxel-fatty acid prodrugs are designed and synthesized by using stearic acid, elaidic acid, oleic acid, linoleic acid and linolenic acid as the aliphatic tails, respectively. Interestingly, the cis-trans configuration of aliphatic tails significantly influences the self-assembly features of prodrugs, and elaidic acid-linked prodrug with a trans double bond show poor self-assembly capacity. Although the aliphatic tails have almost no effect on the redox-sensitive drug release and cytotoxicity, different aliphatic tails significantly influence the chemical stability of prodrugs and the colloidal stability of PNPs, thus affecting the in vivo pharmacokinetics, biodistribution and antitumor efficacy of PNPs. Our findings illustrate how aliphatic tails affect the assembly characteristic of disulfide bond-linked aliphatic prodrugs and the in vivo delivery fate of PNPs, and thus provide theoretical basis for future development of disulfide bond-bridged aliphatic prodrugs. Shenyang Pharmaceutical University 2021-09 2021-02-25 /pmc/articles/PMC8609389/ /pubmed/34849169 http://dx.doi.org/10.1016/j.ajps.2021.02.001 Text en © 2021 Shenyang Pharmaceutical University. Published by Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Paper Wang, Yuequan Luo, Cong Zhou, Shuang Wang, Xinhui Zhang, Xuanbo Li, Shumeng Zhang, Shenwu Wang, Shuo Sun, Bingjun He, Zhonggui Sun, Jin Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies |
title | Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies |
title_full | Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies |
title_fullStr | Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies |
title_full_unstemmed | Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies |
title_short | Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies |
title_sort | investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies |
topic | Original Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609389/ https://www.ncbi.nlm.nih.gov/pubmed/34849169 http://dx.doi.org/10.1016/j.ajps.2021.02.001 |
work_keys_str_mv | AT wangyuequan investigatingthecrucialrolesofaliphatictailsindisulfidebondlinkeddocetaxelprodrugnanoassemblies AT luocong investigatingthecrucialrolesofaliphatictailsindisulfidebondlinkeddocetaxelprodrugnanoassemblies AT zhoushuang investigatingthecrucialrolesofaliphatictailsindisulfidebondlinkeddocetaxelprodrugnanoassemblies AT wangxinhui investigatingthecrucialrolesofaliphatictailsindisulfidebondlinkeddocetaxelprodrugnanoassemblies AT zhangxuanbo investigatingthecrucialrolesofaliphatictailsindisulfidebondlinkeddocetaxelprodrugnanoassemblies AT lishumeng investigatingthecrucialrolesofaliphatictailsindisulfidebondlinkeddocetaxelprodrugnanoassemblies AT zhangshenwu investigatingthecrucialrolesofaliphatictailsindisulfidebondlinkeddocetaxelprodrugnanoassemblies AT wangshuo investigatingthecrucialrolesofaliphatictailsindisulfidebondlinkeddocetaxelprodrugnanoassemblies AT sunbingjun investigatingthecrucialrolesofaliphatictailsindisulfidebondlinkeddocetaxelprodrugnanoassemblies AT hezhonggui investigatingthecrucialrolesofaliphatictailsindisulfidebondlinkeddocetaxelprodrugnanoassemblies AT sunjin investigatingthecrucialrolesofaliphatictailsindisulfidebondlinkeddocetaxelprodrugnanoassemblies |