Cargando…

Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale

Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetat...

Descripción completa

Detalles Bibliográficos
Autores principales: Bugmann, Harald, Seidl, Rupert, Hartig, Florian, Bohn, Friedrich, Brůna, Josef, Cailleret, Maxime, François, Louis, Heinke, Jens, Henrot, Alexandra‐Jane, Hickler, Thomas, Hülsmann, Lisa, Huth, Andreas, Jacquemin, Ingrid, Kollas, Chris, Lasch‐Born, Petra, Lexer, Manfred J., Merganič, Ján, Merganičová, Katarína, Mette, Tobias, Miranda, Brian R., Nadal‐Sala, Daniel, Rammer, Werner, Rammig, Anja, Reineking, Björn, Roedig, Edna, Sabaté, Santi, Steinkamp, Jörg, Suckow, Felicitas, Vacchiano, Giorgio, Wild, Jan, Xu, Chonggang, Reyer, Christopher P. O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609442/
https://www.ncbi.nlm.nih.gov/pubmed/34853712
http://dx.doi.org/10.1002/ecs2.2616
_version_ 1784602927487254528
author Bugmann, Harald
Seidl, Rupert
Hartig, Florian
Bohn, Friedrich
Brůna, Josef
Cailleret, Maxime
François, Louis
Heinke, Jens
Henrot, Alexandra‐Jane
Hickler, Thomas
Hülsmann, Lisa
Huth, Andreas
Jacquemin, Ingrid
Kollas, Chris
Lasch‐Born, Petra
Lexer, Manfred J.
Merganič, Ján
Merganičová, Katarína
Mette, Tobias
Miranda, Brian R.
Nadal‐Sala, Daniel
Rammer, Werner
Rammig, Anja
Reineking, Björn
Roedig, Edna
Sabaté, Santi
Steinkamp, Jörg
Suckow, Felicitas
Vacchiano, Giorgio
Wild, Jan
Xu, Chonggang
Reyer, Christopher P. O.
author_facet Bugmann, Harald
Seidl, Rupert
Hartig, Florian
Bohn, Friedrich
Brůna, Josef
Cailleret, Maxime
François, Louis
Heinke, Jens
Henrot, Alexandra‐Jane
Hickler, Thomas
Hülsmann, Lisa
Huth, Andreas
Jacquemin, Ingrid
Kollas, Chris
Lasch‐Born, Petra
Lexer, Manfred J.
Merganič, Ján
Merganičová, Katarína
Mette, Tobias
Miranda, Brian R.
Nadal‐Sala, Daniel
Rammer, Werner
Rammig, Anja
Reineking, Björn
Roedig, Edna
Sabaté, Santi
Steinkamp, Jörg
Suckow, Felicitas
Vacchiano, Giorgio
Wild, Jan
Xu, Chonggang
Reyer, Christopher P. O.
author_sort Bugmann, Harald
collection PubMed
description Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change. The set of models comprised eight DVMs at the stand scale, three at the landscape scale, and four typically applied at the continental to global scale. Some incorporate empirically derived mortality models, and others are based on experimental data, whereas still others are based on theoretical reasoning. Each DVM was run with at least two alternative mortality submodels. Model behavior was evaluated against empirical time series data, and then, the models were subjected to different scenarios of climate change. Most DVMs matched empirical data quite well, irrespective of the mortality submodel that was used. However, mortality submodels that performed in a very similar manner against past data often led to sharply different trajectories of forest dynamics under future climate change. Most DVMs featured high sensitivity to the mortality submodel, with deviations of basal area and stem numbers on the order of 10–40% per century under current climate and 20–170% under climate change. The sensitivity of a given DVM to scenarios of climate change, however, was typically lower by a factor of two to three. We conclude that (1) mortality is one of the most uncertain processes when it comes to assessing forest response to climate change, and (2) more data and a better process understanding of tree mortality are needed to improve the robustness of simulated future forest dynamics. Our study highlights that comparing several alternative mortality formulations in DVMs provides valuable insights into the effects of process uncertainties on simulated future forest dynamics.
format Online
Article
Text
id pubmed-8609442
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-86094422021-11-29 Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale Bugmann, Harald Seidl, Rupert Hartig, Florian Bohn, Friedrich Brůna, Josef Cailleret, Maxime François, Louis Heinke, Jens Henrot, Alexandra‐Jane Hickler, Thomas Hülsmann, Lisa Huth, Andreas Jacquemin, Ingrid Kollas, Chris Lasch‐Born, Petra Lexer, Manfred J. Merganič, Ján Merganičová, Katarína Mette, Tobias Miranda, Brian R. Nadal‐Sala, Daniel Rammer, Werner Rammig, Anja Reineking, Björn Roedig, Edna Sabaté, Santi Steinkamp, Jörg Suckow, Felicitas Vacchiano, Giorgio Wild, Jan Xu, Chonggang Reyer, Christopher P. O. Ecosphere Articles Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change. The set of models comprised eight DVMs at the stand scale, three at the landscape scale, and four typically applied at the continental to global scale. Some incorporate empirically derived mortality models, and others are based on experimental data, whereas still others are based on theoretical reasoning. Each DVM was run with at least two alternative mortality submodels. Model behavior was evaluated against empirical time series data, and then, the models were subjected to different scenarios of climate change. Most DVMs matched empirical data quite well, irrespective of the mortality submodel that was used. However, mortality submodels that performed in a very similar manner against past data often led to sharply different trajectories of forest dynamics under future climate change. Most DVMs featured high sensitivity to the mortality submodel, with deviations of basal area and stem numbers on the order of 10–40% per century under current climate and 20–170% under climate change. The sensitivity of a given DVM to scenarios of climate change, however, was typically lower by a factor of two to three. We conclude that (1) mortality is one of the most uncertain processes when it comes to assessing forest response to climate change, and (2) more data and a better process understanding of tree mortality are needed to improve the robustness of simulated future forest dynamics. Our study highlights that comparing several alternative mortality formulations in DVMs provides valuable insights into the effects of process uncertainties on simulated future forest dynamics. John Wiley and Sons Inc. 2019-02-20 /pmc/articles/PMC8609442/ /pubmed/34853712 http://dx.doi.org/10.1002/ecs2.2616 Text en © 2019 The Authors. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Bugmann, Harald
Seidl, Rupert
Hartig, Florian
Bohn, Friedrich
Brůna, Josef
Cailleret, Maxime
François, Louis
Heinke, Jens
Henrot, Alexandra‐Jane
Hickler, Thomas
Hülsmann, Lisa
Huth, Andreas
Jacquemin, Ingrid
Kollas, Chris
Lasch‐Born, Petra
Lexer, Manfred J.
Merganič, Ján
Merganičová, Katarína
Mette, Tobias
Miranda, Brian R.
Nadal‐Sala, Daniel
Rammer, Werner
Rammig, Anja
Reineking, Björn
Roedig, Edna
Sabaté, Santi
Steinkamp, Jörg
Suckow, Felicitas
Vacchiano, Giorgio
Wild, Jan
Xu, Chonggang
Reyer, Christopher P. O.
Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale
title Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale
title_full Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale
title_fullStr Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale
title_full_unstemmed Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale
title_short Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale
title_sort tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609442/
https://www.ncbi.nlm.nih.gov/pubmed/34853712
http://dx.doi.org/10.1002/ecs2.2616
work_keys_str_mv AT bugmannharald treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT seidlrupert treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT hartigflorian treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT bohnfriedrich treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT brunajosef treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT cailleretmaxime treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT francoislouis treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT heinkejens treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT henrotalexandrajane treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT hicklerthomas treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT hulsmannlisa treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT huthandreas treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT jacqueminingrid treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT kollaschris treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT laschbornpetra treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT lexermanfredj treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT merganicjan treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT merganicovakatarina treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT mettetobias treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT mirandabrianr treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT nadalsaladaniel treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT rammerwerner treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT rammiganja treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT reinekingbjorn treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT roedigedna treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT sabatesanti treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT steinkampjorg treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT suckowfelicitas treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT vacchianogiorgio treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT wildjan treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT xuchonggang treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale
AT reyerchristopherpo treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale