Cargando…
Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale
Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetat...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609442/ https://www.ncbi.nlm.nih.gov/pubmed/34853712 http://dx.doi.org/10.1002/ecs2.2616 |
_version_ | 1784602927487254528 |
---|---|
author | Bugmann, Harald Seidl, Rupert Hartig, Florian Bohn, Friedrich Brůna, Josef Cailleret, Maxime François, Louis Heinke, Jens Henrot, Alexandra‐Jane Hickler, Thomas Hülsmann, Lisa Huth, Andreas Jacquemin, Ingrid Kollas, Chris Lasch‐Born, Petra Lexer, Manfred J. Merganič, Ján Merganičová, Katarína Mette, Tobias Miranda, Brian R. Nadal‐Sala, Daniel Rammer, Werner Rammig, Anja Reineking, Björn Roedig, Edna Sabaté, Santi Steinkamp, Jörg Suckow, Felicitas Vacchiano, Giorgio Wild, Jan Xu, Chonggang Reyer, Christopher P. O. |
author_facet | Bugmann, Harald Seidl, Rupert Hartig, Florian Bohn, Friedrich Brůna, Josef Cailleret, Maxime François, Louis Heinke, Jens Henrot, Alexandra‐Jane Hickler, Thomas Hülsmann, Lisa Huth, Andreas Jacquemin, Ingrid Kollas, Chris Lasch‐Born, Petra Lexer, Manfred J. Merganič, Ján Merganičová, Katarína Mette, Tobias Miranda, Brian R. Nadal‐Sala, Daniel Rammer, Werner Rammig, Anja Reineking, Björn Roedig, Edna Sabaté, Santi Steinkamp, Jörg Suckow, Felicitas Vacchiano, Giorgio Wild, Jan Xu, Chonggang Reyer, Christopher P. O. |
author_sort | Bugmann, Harald |
collection | PubMed |
description | Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change. The set of models comprised eight DVMs at the stand scale, three at the landscape scale, and four typically applied at the continental to global scale. Some incorporate empirically derived mortality models, and others are based on experimental data, whereas still others are based on theoretical reasoning. Each DVM was run with at least two alternative mortality submodels. Model behavior was evaluated against empirical time series data, and then, the models were subjected to different scenarios of climate change. Most DVMs matched empirical data quite well, irrespective of the mortality submodel that was used. However, mortality submodels that performed in a very similar manner against past data often led to sharply different trajectories of forest dynamics under future climate change. Most DVMs featured high sensitivity to the mortality submodel, with deviations of basal area and stem numbers on the order of 10–40% per century under current climate and 20–170% under climate change. The sensitivity of a given DVM to scenarios of climate change, however, was typically lower by a factor of two to three. We conclude that (1) mortality is one of the most uncertain processes when it comes to assessing forest response to climate change, and (2) more data and a better process understanding of tree mortality are needed to improve the robustness of simulated future forest dynamics. Our study highlights that comparing several alternative mortality formulations in DVMs provides valuable insights into the effects of process uncertainties on simulated future forest dynamics. |
format | Online Article Text |
id | pubmed-8609442 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86094422021-11-29 Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale Bugmann, Harald Seidl, Rupert Hartig, Florian Bohn, Friedrich Brůna, Josef Cailleret, Maxime François, Louis Heinke, Jens Henrot, Alexandra‐Jane Hickler, Thomas Hülsmann, Lisa Huth, Andreas Jacquemin, Ingrid Kollas, Chris Lasch‐Born, Petra Lexer, Manfred J. Merganič, Ján Merganičová, Katarína Mette, Tobias Miranda, Brian R. Nadal‐Sala, Daniel Rammer, Werner Rammig, Anja Reineking, Björn Roedig, Edna Sabaté, Santi Steinkamp, Jörg Suckow, Felicitas Vacchiano, Giorgio Wild, Jan Xu, Chonggang Reyer, Christopher P. O. Ecosphere Articles Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change. The set of models comprised eight DVMs at the stand scale, three at the landscape scale, and four typically applied at the continental to global scale. Some incorporate empirically derived mortality models, and others are based on experimental data, whereas still others are based on theoretical reasoning. Each DVM was run with at least two alternative mortality submodels. Model behavior was evaluated against empirical time series data, and then, the models were subjected to different scenarios of climate change. Most DVMs matched empirical data quite well, irrespective of the mortality submodel that was used. However, mortality submodels that performed in a very similar manner against past data often led to sharply different trajectories of forest dynamics under future climate change. Most DVMs featured high sensitivity to the mortality submodel, with deviations of basal area and stem numbers on the order of 10–40% per century under current climate and 20–170% under climate change. The sensitivity of a given DVM to scenarios of climate change, however, was typically lower by a factor of two to three. We conclude that (1) mortality is one of the most uncertain processes when it comes to assessing forest response to climate change, and (2) more data and a better process understanding of tree mortality are needed to improve the robustness of simulated future forest dynamics. Our study highlights that comparing several alternative mortality formulations in DVMs provides valuable insights into the effects of process uncertainties on simulated future forest dynamics. John Wiley and Sons Inc. 2019-02-20 /pmc/articles/PMC8609442/ /pubmed/34853712 http://dx.doi.org/10.1002/ecs2.2616 Text en © 2019 The Authors. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Bugmann, Harald Seidl, Rupert Hartig, Florian Bohn, Friedrich Brůna, Josef Cailleret, Maxime François, Louis Heinke, Jens Henrot, Alexandra‐Jane Hickler, Thomas Hülsmann, Lisa Huth, Andreas Jacquemin, Ingrid Kollas, Chris Lasch‐Born, Petra Lexer, Manfred J. Merganič, Ján Merganičová, Katarína Mette, Tobias Miranda, Brian R. Nadal‐Sala, Daniel Rammer, Werner Rammig, Anja Reineking, Björn Roedig, Edna Sabaté, Santi Steinkamp, Jörg Suckow, Felicitas Vacchiano, Giorgio Wild, Jan Xu, Chonggang Reyer, Christopher P. O. Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale |
title | Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale |
title_full | Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale |
title_fullStr | Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale |
title_full_unstemmed | Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale |
title_short | Tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale |
title_sort | tree mortality submodels drive simulated long‐term forest dynamics: assessing 15 models from the stand to global scale |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609442/ https://www.ncbi.nlm.nih.gov/pubmed/34853712 http://dx.doi.org/10.1002/ecs2.2616 |
work_keys_str_mv | AT bugmannharald treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT seidlrupert treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT hartigflorian treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT bohnfriedrich treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT brunajosef treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT cailleretmaxime treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT francoislouis treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT heinkejens treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT henrotalexandrajane treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT hicklerthomas treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT hulsmannlisa treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT huthandreas treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT jacqueminingrid treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT kollaschris treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT laschbornpetra treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT lexermanfredj treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT merganicjan treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT merganicovakatarina treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT mettetobias treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT mirandabrianr treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT nadalsaladaniel treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT rammerwerner treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT rammiganja treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT reinekingbjorn treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT roedigedna treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT sabatesanti treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT steinkampjorg treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT suckowfelicitas treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT vacchianogiorgio treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT wildjan treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT xuchonggang treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale AT reyerchristopherpo treemortalitysubmodelsdrivesimulatedlongtermforestdynamicsassessing15modelsfromthestandtoglobalscale |