Cargando…

Neuronal Deposition of Amyloid-β Oligomers and Hyperphosphorylated Tau Is Closely Connected with Cognitive Dysfunction in Aged Dogs

BACKGROUND: Canine cognitive dysfunction (CCD) is a progressive syndrome recognized in mature to aged dogs with a variety of neuropathological changes similar to human Alzheimer’s disease (AD), for which it is thought to be a good natural model. However, the presence of hyperphosphorylated tau prote...

Descripción completa

Detalles Bibliográficos
Autores principales: Habiba, Umma, Ozawa, Makiko, Chambers, James K., Uchida, Kazuyuki, Descallar, Joseph, Nakayama, Hiroyuki, Summers, Brian A., Morley, John W., Tayebi, Mourad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609497/
https://www.ncbi.nlm.nih.gov/pubmed/34870101
http://dx.doi.org/10.3233/ADR-210035
Descripción
Sumario:BACKGROUND: Canine cognitive dysfunction (CCD) is a progressive syndrome recognized in mature to aged dogs with a variety of neuropathological changes similar to human Alzheimer’s disease (AD), for which it is thought to be a good natural model. However, the presence of hyperphosphorylated tau protein (p-Tau) in dogs with CCD has only been demonstrated infrequently. OBJECTIVE: The aim of the present study was to investigate the presence of p-Tau and amyloid-β oligomer (Aβo) in cerebral cortex and hippocampus of dogs with CCD, with focus on an epitope retrieval protocol to unmask p-Tau. METHODS: Immunohistochemical and immunofluorescence analysis of the cortical and hippocampal regions of five CCD-affected and two nondemented aged dogs using 4G8 anti-Aβp, anti-Aβ(1 - 42) nanobody (PrioAD13) and AT8 anti-p-Tau (Ser202, Thr205) antibody were used to demonstrate the presence of Aβ plaques (Aβp) and Aβ(1 - 42) oligomers and p-Tau deposits, respectively. RESULTS: The extracellular Aβ senile plaques were of the diffuse type which lack the dense core normally seen in human AD. While p-Tau deposits displayed a widespread pattern and closely resembled the typical human neuropathology, they did not co-localize with the Aβp. Of considerable interest, however, widespread intraneuronal deposition of Aβ(1 - 42) oligomers were exhibited in the frontal cortex and hippocampal region that co-localized with p-Tau. CONCLUSION: Taken together, these findings reveal further shared neuropathologic features of AD and CCD, supporting the case that aged dogs afflicted with CCD offer a relevant model for investigating human AD.