Cargando…
Modular Synthetic Biology Toolkit for Filamentous Fungi
[Image: see text] Filamentous fungi are highly productive cell factories, often used in industry for the production of enzymes and small bioactive compounds. Recent years have seen an increasing number of synthetic-biology-based applications in fungi, emphasizing the need for a synthetic biology too...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609570/ https://www.ncbi.nlm.nih.gov/pubmed/34726388 http://dx.doi.org/10.1021/acssynbio.1c00260 |
Sumario: | [Image: see text] Filamentous fungi are highly productive cell factories, often used in industry for the production of enzymes and small bioactive compounds. Recent years have seen an increasing number of synthetic-biology-based applications in fungi, emphasizing the need for a synthetic biology toolkit for these organisms. Here we present a collection of 96 genetic parts, characterized in Penicillium or Aspergillus species, that are compatible and interchangeable with the Modular Cloning system. The toolkit contains natural and synthetic promoters (constitutive and inducible), terminators, fluorescent reporters, and selection markers. Furthermore, there are regulatory and DNA-binding domains of transcriptional regulators and components for implementing different CRISPR-based technologies. Genetic parts can be assembled into complex multipartite assemblies and delivered through genomic integration or expressed from an AMA1-sequence-based, fungal-replicating shuttle vector. With this toolkit, synthetic transcription units with established promoters, fusion proteins, or synthetic transcriptional regulation devices can be more rapidly assembled in a standardized and modular manner for novel fungal cell factories. |
---|