Cargando…
Spliceator: multi-species splice site prediction using convolutional neural networks
BACKGROUND: Ab initio prediction of splice sites is an essential step in eukaryotic genome annotation. Recent predictors have exploited Deep Learning algorithms and reliable gene structures from model organisms. However, Deep Learning methods for non-model organisms are lacking. RESULTS: We develope...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609763/ https://www.ncbi.nlm.nih.gov/pubmed/34814826 http://dx.doi.org/10.1186/s12859-021-04471-3 |
Sumario: | BACKGROUND: Ab initio prediction of splice sites is an essential step in eukaryotic genome annotation. Recent predictors have exploited Deep Learning algorithms and reliable gene structures from model organisms. However, Deep Learning methods for non-model organisms are lacking. RESULTS: We developed Spliceator to predict splice sites in a wide range of species, including model and non-model organisms. Spliceator uses a convolutional neural network and is trained on carefully validated data from over 100 organisms. We show that Spliceator achieves consistently high accuracy (89–92%) compared to existing methods on independent benchmarks from human, fish, fly, worm, plant and protist organisms. CONCLUSIONS: Spliceator is a new Deep Learning method trained on high-quality data, which can be used to predict splice sites in diverse organisms, ranging from human to protists, with consistently high accuracy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-021-04471-3. |
---|