Cargando…
Predicting PM2.5 atmospheric air pollution using deep learning with meteorological data and ground-based observations and remote-sensing satellite big data
Air pollution is one of the world’s leading factors for early deaths. Every 5 s, someone around the world dies from the adverse health effects of air pollution. In order to mitigate the effects of air pollution, we must first understand it, find its patterns and correlations, and predict it in advan...
Autores principales: | Muthukumar, Pratyush, Cocom, Emmanuel, Nagrecha, Kabir, Comer, Dawn, Burga, Irene, Taub, Jeremy, Calvert, Chisato Fukuda, Holm, Jeanne, Pourhomayoun, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609844/ https://www.ncbi.nlm.nih.gov/pubmed/34840624 http://dx.doi.org/10.1007/s11869-021-01126-3 |
Ejemplares similares
-
Daily GRACE satellite data evaluate short-term hydro-meteorological fluxes from global atmospheric reanalyses
por: Eicker, Annette, et al.
Publicado: (2020) -
Estimating ground-level PM(10) using satellite remote sensing and ground-based meteorological measurements over Tehran
por: Sotoudeheian, Saeed, et al.
Publicado: (2014) -
Estimating Regional Spatial and Temporal Variability of PM(2.5) Concentrations Using Satellite Data, Meteorology, and Land Use Information
por: Liu, Yang, et al.
Publicado: (2009) -
Satellite meteorology : an introduction
por: Kidder, Stanley Q.
Publicado: (1995) -
Meteorological satellite systems
por: Tan, Su-Yin
Publicado: (2014)