Cargando…

Randomized and non-randomized designs for causal inference with longitudinal data in rare disorders

In the United States, approximately 7000 rare diseases affect 30 million patients, and only 10% of these diseases have existing therapies. Sound study design and causal inference methods are essential to demonstrate the therapeutic efficacy, safety, and effectiveness of new therapies. In the rare di...

Descripción completa

Detalles Bibliográficos
Autores principales: Izem, Rima, McCarter, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609847/
https://www.ncbi.nlm.nih.gov/pubmed/34814939
http://dx.doi.org/10.1186/s13023-021-02124-5
Descripción
Sumario:In the United States, approximately 7000 rare diseases affect 30 million patients, and only 10% of these diseases have existing therapies. Sound study design and causal inference methods are essential to demonstrate the therapeutic efficacy, safety, and effectiveness of new therapies. In the rare diseases setting, several factors challenge the use of typical parallel control designs: the small patient population size, genotypic and phenotypic diversity, and the complexity and incomplete understanding of the disorder’s progression. Repeated measures, when spaced appropriately relative to disease progression and exploited in design and analysis, can increase study power and reduce variability in treatment effect estimation. This paper reviews these longitudinal designs and draws the parallel between some new and existing randomized studies in rare diseases and their less well-known controlled observational study designs. We show that self-controlled randomized crossover and N-of-1 designs have similar considerations as the observational case series and case-crossover designs. Also, randomized sequential designs have similar considerations to longitudinal cohort studies using sequential matching or weighting to control confounding. We discuss design and analysis considerations for valid causal inference and illustrate them with examples of analyses in multiple rare disorders, including urea cycle disorder and cystic fibrosis.