Cargando…
FERMT1 knockdown inhibits oral squamous cell carcinoma cell epithelial-mesenchymal transition by inactivating the PI3K/AKT signaling pathway
BACKGROUND: The metastasis of oral cancer is one of the main causes of death. However, the mechanisms underlying oral cancer metastasis have not been completely elucidated. Fermitin family member 1 (FERMT1) plays an -oncogene role in many cancers; however, the role of FERMT1 in oral squamous cell ca...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609848/ https://www.ncbi.nlm.nih.gov/pubmed/34814915 http://dx.doi.org/10.1186/s12903-021-01955-9 |
Sumario: | BACKGROUND: The metastasis of oral cancer is one of the main causes of death. However, the mechanisms underlying oral cancer metastasis have not been completely elucidated. Fermitin family member 1 (FERMT1) plays an -oncogene role in many cancers; however, the role of FERMT1 in oral squamous cell cancer (OSCC) remains unclear. METHODS: In this study, OSCC cells were treated with 5 ng/ml recombinant human Transforming growth factor-β1 (TGF-β1) protein. FERMT1 expression was measured in OSCC cell lines by RT-qPCR and western blotting. The effect of FERMT1 knockdown on the migration and invasion of OSCC cells was evaluated by Transwell assay. The epithelial-mesenchymal transition (EMT) and PI3K/AKT signaling pathway-related mRNA expression and protein levels were assessed by RT-qPCR and western blotting. RESULTS: We found that FERMT1 expression was elevated in TGF-β1-induced OSCC cell lines, and knockdown of FERMT1 inhibited the migration and invasion in TGF-β1-induced OSCC cells. FERMT1 silencing inhibited vimentin, N-cadherin, matrix metalloproteinase 9 (MMP-9) expression and promoted E-cadherin expression, suggesting that FERMT1 silencing inhibited EMT in TGF-β1-induced OSCC cells. Furthermore, FERMT1 silencing inactivated the PI3K/AKT signaling pathway in TGF-β1-induced OSCC cells. Activation of the PI3K/AKT signaling pathway reversed the effect of FERMT1 silencing on OSCC cell migration, invasion, and EMT. CONCLUSIONS: FERMT1 silencing inhibits the migration, invasion, and EMT of OSCC cells via inactivation of the PI3K/AKT signaling pathway, suggesting that FERMT1 is a novel and potential therapeutic target for anti-metastatic strategies for OSCC. |
---|