Cargando…

Genome-wide DNA methylation analysis of pulmonary function in middle and old-aged Chinese monozygotic twins

BACKGROUND: Previous studies have determined the epigenetic association between DNA methylation and pulmonary function among various ethnics, whereas this association is largely unknown in Chinese adults. Thus, we aimed to explore epigenetic relationships between genome-wide DNA methylation levels a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Tong, Wang, Weijing, Li, Weilong, Duan, Haiping, Xu, Chunsheng, Tian, Xiaocao, Zhang, Dongfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609861/
https://www.ncbi.nlm.nih.gov/pubmed/34809630
http://dx.doi.org/10.1186/s12931-021-01896-5
Descripción
Sumario:BACKGROUND: Previous studies have determined the epigenetic association between DNA methylation and pulmonary function among various ethnics, whereas this association is largely unknown in Chinese adults. Thus, we aimed to explore epigenetic relationships between genome-wide DNA methylation levels and pulmonary function among middle-aged Chinese monozygotic twins. METHODS: The monozygotic twin sample was drawn from the Qingdao Twin Registry. Pulmonary function was measured by three parameters including forced expiratory volume the first second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio. Linear mixed effect model was used to regress the methylation level of CpG sites on pulmonary function. After that, we applied Genomic Regions Enrichment of Annotations Tool (GREAT) to predict the genomic regions enrichment, and used comb-p python library to detect differentially methylated regions (DMRs). Gene expression analysis was conducted to validate the results of differentially methylated analyses. RESULTS: We identified 112 CpG sites with the level of P < 1 × 10(–4) which were annotated to 40 genes. We identified 12 common enriched pathways of three pulmonary function parameters. We detected 39 DMRs located at 23 genes, of which PRDM1 was related to decreased pulmonary function, and MPL, LTB4R2, and EPHB3 were related to increased pulmonary function. The gene expression analyses validated DIP2C, ASB2, SLC6A5, and GAS6 related to decreased pulmonary function. CONCLUSION: Our DNA methylation sequencing analysis on identical twins provides new references for the epigenetic regulation on pulmonary function. Several CpG sites, genes, biological pathways and DMRs are considered as possible crucial to pulmonary function. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12931-021-01896-5.