Cargando…
Deep IDA: A Deep Learning Method for Integrative Discriminant Analysis of Multi-View Data with Feature Ranking–An Application to COVID-19 severity
COVID-19 severity is due to complications from SARS-Cov-2 but the clinical course of the infection varies for individuals, emphasizing the need to better understand the disease at the molecular level. We use clinical and multiple molecular data (or views) obtained from patients with and without COVI...
Autores principales: | Wang, Jiuzhou, Safo, Sandra E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609900/ https://www.ncbi.nlm.nih.gov/pubmed/34815984 |
Ejemplares similares
-
KaIDA: a modular tool for assisting image annotation in deep learning
por: Schilling, Marcel P., et al.
Publicado: (2022) -
Sparse reduced-rank regression for integrating omics data
por: Hilafu, Haileab, et al.
Publicado: (2020) -
DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion
por: Cao, Ruifen, et al.
Publicado: (2021) -
Home Textile Pattern Emotion Labeling Using Deep Multi-View Feature Learning
por: Yang, Juan, et al.
Publicado: (2021) -
ALS Point Cloud Classification by Integrating an Improved Fully Convolutional Network into Transfer Learning with Multi-Scale and Multi-View Deep Features
por: Lei, Xiangda, et al.
Publicado: (2020)