Cargando…

Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection

Distributed time-domain Brillouin scattering fiber sensors have been widely used to measure the changes of the temperature and strain. The linear dependence of the temperature and strain on the Brillouin frequency shift enabled the distributed temperature and strain sensing based on mapping of the B...

Descripción completa

Detalles Bibliográficos
Autores principales: Bao, Xiaoyi, Zhou, Zichao, Wang, Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610014/
https://www.ncbi.nlm.nih.gov/pubmed/34841256
http://dx.doi.org/10.1186/s43074-021-00038-w
Descripción
Sumario:Distributed time-domain Brillouin scattering fiber sensors have been widely used to measure the changes of the temperature and strain. The linear dependence of the temperature and strain on the Brillouin frequency shift enabled the distributed temperature and strain sensing based on mapping of the Brillouin gain spectrum. In addition, an acoustic wave can be detected by the four wave mixing (FWM) associated SBS process, in which phase matching condition is satisfied via up-down conversion of SBS process through birefringence matching before and after the conversion process. Brillouin scattering can be considered as the scattering of a pump wave from a moving grating (acoustic phonon) which induces a Doppler frequency shift in the resulting Stokes wave. The frequency shift is dependent on many factors including the velocity of sound in the scattering medium as well as the index of refraction. Such a process can be used to monitor the gain of random fiber laser based on SBS, the distributed acoustic wave reflect the distributed SBS gain for random lasing radiation, as well as the relative intensity noise inside the laser gain medium. In this review paper, the distributed time-domain sensing system based on Brillouin scattering including Brillouin optical time-domain reflectometry (BOTDR), Brillouin optical time-domain analysis (BOTDA), and FWM enhanced SBS for acoustic wave detection are introduced for their working principles and recent progress. The distributed Brillouin sensors based on specialty fibers for simultaneous temperature and strain measurement are summarized. Applications for the Brillouin scattering time-domain sensors are briefly discussed.