Cargando…
Personalized immunotherapy in cancer precision medicine
With the significant advances in cancer genomics using next-generation sequencing technologies, genomic and molecular profiling-based precision medicine is used as a part of routine clinical test for guiding and selecting the most appropriate treatments for individual cancer patients. Although many...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Compuscript
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610159/ https://www.ncbi.nlm.nih.gov/pubmed/34369137 http://dx.doi.org/10.20892/j.issn.2095-3941.2021.0032 |
_version_ | 1784603051932254208 |
---|---|
author | Kiyotani, Kazuma Toyoshima, Yujiro Nakamura, Yusuke |
author_facet | Kiyotani, Kazuma Toyoshima, Yujiro Nakamura, Yusuke |
author_sort | Kiyotani, Kazuma |
collection | PubMed |
description | With the significant advances in cancer genomics using next-generation sequencing technologies, genomic and molecular profiling-based precision medicine is used as a part of routine clinical test for guiding and selecting the most appropriate treatments for individual cancer patients. Although many molecular-targeted therapies for a number of actionable genomic alterations have been developed, the clinical application of such information is still limited to a small proportion of cancer patients. In this review, we summarize the current status of personalized drug selection based on genomic and molecular profiling and highlight the challenges how we can further utilize the individual genomic information. Cancer immunotherapies, including immune checkpoint inhibitors, would be one of the potential approaches to apply the results of genomic sequencing most effectively. Highly cancer-specific antigens derived from somatic mutations, the so-called neoantigens, occurring in individual cancers have been in focus recently. Cancer immunotherapies, which target neoantigens, could lead to a precise treatment for cancer patients, despite the challenge in accurately predicting neoantigens that can induce cytotoxic T cells in individual patients. Precise prediction of neoantigens should accelerate the development of personalized immunotherapy including cancer vaccines and T-cell receptor-engineered T-cell therapy for a broader range of cancer patients. |
format | Online Article Text |
id | pubmed-8610159 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Compuscript |
record_format | MEDLINE/PubMed |
spelling | pubmed-86101592021-12-13 Personalized immunotherapy in cancer precision medicine Kiyotani, Kazuma Toyoshima, Yujiro Nakamura, Yusuke Cancer Biol Med Review With the significant advances in cancer genomics using next-generation sequencing technologies, genomic and molecular profiling-based precision medicine is used as a part of routine clinical test for guiding and selecting the most appropriate treatments for individual cancer patients. Although many molecular-targeted therapies for a number of actionable genomic alterations have been developed, the clinical application of such information is still limited to a small proportion of cancer patients. In this review, we summarize the current status of personalized drug selection based on genomic and molecular profiling and highlight the challenges how we can further utilize the individual genomic information. Cancer immunotherapies, including immune checkpoint inhibitors, would be one of the potential approaches to apply the results of genomic sequencing most effectively. Highly cancer-specific antigens derived from somatic mutations, the so-called neoantigens, occurring in individual cancers have been in focus recently. Cancer immunotherapies, which target neoantigens, could lead to a precise treatment for cancer patients, despite the challenge in accurately predicting neoantigens that can induce cytotoxic T cells in individual patients. Precise prediction of neoantigens should accelerate the development of personalized immunotherapy including cancer vaccines and T-cell receptor-engineered T-cell therapy for a broader range of cancer patients. Compuscript 2021-11-15 2021-08-09 /pmc/articles/PMC8610159/ /pubmed/34369137 http://dx.doi.org/10.20892/j.issn.2095-3941.2021.0032 Text en Copyright: © 2021, Cancer Biology & Medicine https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY) 4.0 (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Review Kiyotani, Kazuma Toyoshima, Yujiro Nakamura, Yusuke Personalized immunotherapy in cancer precision medicine |
title | Personalized immunotherapy in cancer precision medicine |
title_full | Personalized immunotherapy in cancer precision medicine |
title_fullStr | Personalized immunotherapy in cancer precision medicine |
title_full_unstemmed | Personalized immunotherapy in cancer precision medicine |
title_short | Personalized immunotherapy in cancer precision medicine |
title_sort | personalized immunotherapy in cancer precision medicine |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610159/ https://www.ncbi.nlm.nih.gov/pubmed/34369137 http://dx.doi.org/10.20892/j.issn.2095-3941.2021.0032 |
work_keys_str_mv | AT kiyotanikazuma personalizedimmunotherapyincancerprecisionmedicine AT toyoshimayujiro personalizedimmunotherapyincancerprecisionmedicine AT nakamurayusuke personalizedimmunotherapyincancerprecisionmedicine |