Cargando…
Heat shock enhances outer-membrane vesicle release in Bordetella spp.
Pertussis, also known as whooping cough, is caused by the Gram-negative bacterium Bordetella pertussis, an obligate human pathogen. Despite high vaccination rates in high-income countries, resurgence of pertussis cases is an occurring problem that urges the necessity of developing an improved vaccin...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610307/ https://www.ncbi.nlm.nih.gov/pubmed/34841303 http://dx.doi.org/10.1016/j.crmicr.2020.100009 |
Sumario: | Pertussis, also known as whooping cough, is caused by the Gram-negative bacterium Bordetella pertussis, an obligate human pathogen. Despite high vaccination rates in high-income countries, resurgence of pertussis cases is an occurring problem that urges the necessity of developing an improved vaccine. Likewise, the efficacy of vaccines for Bordetella bronchiseptica, which causes similar disease in pigs and companion animals, is debatable. A promising approach for novel vaccines is the use of outer membrane vesicles (OMVs). However, spontaneous OMV (sOMV) release by Bordetella spp. is too low for cost-effective vaccine production. Therefore, we investigated the influence of growth in various media commonly used for culturing Bordetella in the Bvg(+), i.e. virulent, phase and of a heat shock applied to inactivate the cells on OMV production. Inactivation of the bacterial cells at 56 °C before OMV isolation greatly enhanced OMV release in both Bordetella spp. without causing significant cell lysis. The growth medium used barely affected the efficiency of OMV release but did affect the protein pattern of the OMVs. Differences were found to be related, at least in part, to different availability of the nutrient metals iron and zinc in the media and include expression of potentially relevant vaccine antigens, such as the receptors FauA and ZnuD. The protein content of OMVs released by heat shock was comparable to that of sOMVs as determined by SDS-PAGE and Western blot analysis, and their heat-modifiable electrophoretic mobility suggests that also protein conformation is unaffected. However, significant differences were noticed between the protein content of OMVs and that of a purified outer membrane fraction, with two major outer membrane proteins, porin OmpP and the peptidoglycan-associated RmpM, being underrepresented in the OMVs. Altogether, these results indicate that the application of a heat shock is potentially an important step in the development of cost-effective, OMV-based vaccines for both Bordetella spp. |
---|