Cargando…
Proteomics and transcriptomic analysis of Micrococcus luteus strain AS2 under arsenite stress and its potential role in arsenic removal
The proteomics and transcriptomic analysis of Micrococcus luteus strain AS2 was carried out through 2D gel electrophoresis and RT-PCR. Seven protein spots were selected randomly from the gel and identified through mass spectrometry. Four proteins including putative metal-dependent hydrolase TatD, th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610323/ https://www.ncbi.nlm.nih.gov/pubmed/34841312 http://dx.doi.org/10.1016/j.crmicr.2021.100020 |
Sumario: | The proteomics and transcriptomic analysis of Micrococcus luteus strain AS2 was carried out through 2D gel electrophoresis and RT-PCR. Seven protein spots were selected randomly from the gel and identified through mass spectrometry. Four proteins including putative metal-dependent hydrolase TatD, thioredoxin reductase, DNA-directed RNA polymerase subunit alpha and chaperone protein DnaK were upregulated while superoxide dismutase [Mn], 3-oxoacyl-[acyl-carrier-protein] reductase FabG, and putative alkyl/aryl-sulfatase YjcS were down-regulated under arsenite stress. No significant difference was observed in aioB gene expression analysis in the presence and absence of arsenite. The optimum arsenite processing ability was determined at 37°C (90%) and at pH 7 (92%). The maximum metal processing ability was determined at 250 mM arsenite/L (90%) while the minimum was estimated at 1250 mM arsenite/L (42%). The maximum arsenite removal ability of strain AS2 determined after 8 days was 68 and 82% from wastewater and distilled water, and the organism can be a good bioresource for green chemistry to eradicate environmental arsenite. |
---|