Cargando…
Intranasal inoculation with Bordetella pertussis confers protection without inducing classical whooping cough in baboons
BACKGROUND: The resurgence of whooping cough in many countries highlights the crucial need for a better understanding of the pathogenesis of respiratory infection by Bordetella pertussis. Exposure of baboons to B. pertussis by the intranasal and intra-tracheal routes is a recently described preclini...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610340/ https://www.ncbi.nlm.nih.gov/pubmed/34841362 http://dx.doi.org/10.1016/j.crmicr.2021.100072 |
Sumario: | BACKGROUND: The resurgence of whooping cough in many countries highlights the crucial need for a better understanding of the pathogenesis of respiratory infection by Bordetella pertussis. Exposure of baboons to B. pertussis by the intranasal and intra-tracheal routes is a recently described preclinical model that reproduces both B. pertussis infection of humans and whooping cough disease. Here, we tested both intranasal and intranasal+intra-tracheal exposure routes and assessed their impact on disease development and immunity. METHODS: Young baboons were intranasally exposed to the B1917 clinical isolate, representative of circulating strains in Europe, or its green-fluorescent protein expressing derivative. Animals were followed for pertussis symptoms and bacterial colonization and by in vivo probe-based confocal laser endomicroscopy (pCLE) imaging. Sero-conversion and protection against subsequent infection were then evaluated. RESULTS: Seroconversion and bacterial colonization of both the nasopharynx and trachea was observed in baboons exposed to B. pertussis by the intranasal route only, and also in those animals challenged by both the intranasal and intra-tracheal routes together. However, baboons exposed solely by the intranasal route developed only mild clinical symptoms, with no paroxysmal cough. These animals were protected against re-infection by B. pertussis. CONCLUSIONS: Intranasal exposure of baboons to B. pertussis does not induce disease but elicits immune mechanisms that protect them from subsequent exposure to the bacteria. These findings suggest that the intranasal route of inoculation in this non-human primate model could be used in the pre-clinical evaluation of nasal candidate vaccines against pertussis. |
---|