Cargando…

Phase Transformation Dynamics in Sulfate-Loaded Lanthanide Triphosphonates. Proton Conductivity and Application as Fillers in PEMFCs

[Image: see text] Phase transformation dynamics and proton conduction properties are reported for cationic layer-featured coordination polymers derived from the combination of lanthanide ions (Ln(3+)) with nitrilo-tris(methylenephosphonic acid) (H(6)NMP) in the presence of sulfate ions. Two families...

Descripción completa

Detalles Bibliográficos
Autores principales: Salcedo, Inés R., Colodrero, Rosario M. P., Bazaga-García, Montse, López-González, M., del Río, Carmen, Xanthopoulos, Konstantinos, Demadis, Konstantinos D., Hix, Gary B., Furasova, Aleksandra D., Choquesillo-Lazarte, Duane, Olivera-Pastor, Pascual, Cabeza, Aurelio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610370/
https://www.ncbi.nlm.nih.gov/pubmed/33764728
http://dx.doi.org/10.1021/acsami.1c01441
_version_ 1784603099579547648
author Salcedo, Inés R.
Colodrero, Rosario M. P.
Bazaga-García, Montse
López-González, M.
del Río, Carmen
Xanthopoulos, Konstantinos
Demadis, Konstantinos D.
Hix, Gary B.
Furasova, Aleksandra D.
Choquesillo-Lazarte, Duane
Olivera-Pastor, Pascual
Cabeza, Aurelio
author_facet Salcedo, Inés R.
Colodrero, Rosario M. P.
Bazaga-García, Montse
López-González, M.
del Río, Carmen
Xanthopoulos, Konstantinos
Demadis, Konstantinos D.
Hix, Gary B.
Furasova, Aleksandra D.
Choquesillo-Lazarte, Duane
Olivera-Pastor, Pascual
Cabeza, Aurelio
author_sort Salcedo, Inés R.
collection PubMed
description [Image: see text] Phase transformation dynamics and proton conduction properties are reported for cationic layer-featured coordination polymers derived from the combination of lanthanide ions (Ln(3+)) with nitrilo-tris(methylenephosphonic acid) (H(6)NMP) in the presence of sulfate ions. Two families of materials are isolated and structurally characterized, i.e., [Ln(2)(H(4)NMP)(2)(H(2)O)(4)](HSO(4))(2)·nH(2)O (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb; n = 4–5, Series I) and [Ln(H(5)NMP)]SO(4)·2H(2)O (Ln = Pr, Nd, Eu, Gd, Tb; Series II). Eu/Tb bimetallic solid solutions are also prepared for photoluminescence studies. Members of families I and II display high proton conductivity (10(–3) and 10(–2) S·cm(–1) at 80 °C and 95% relative humidity) and are studied as fillers for Nafion-based composite membranes in PEMFCs, under operating conditions. Composite membranes exhibit higher power and current densities than the pristine Nafion membrane working in the range of 70–90 °C and 100% relative humidity and with similar proton conductivity.
format Online
Article
Text
id pubmed-8610370
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-86103702021-11-24 Phase Transformation Dynamics in Sulfate-Loaded Lanthanide Triphosphonates. Proton Conductivity and Application as Fillers in PEMFCs Salcedo, Inés R. Colodrero, Rosario M. P. Bazaga-García, Montse López-González, M. del Río, Carmen Xanthopoulos, Konstantinos Demadis, Konstantinos D. Hix, Gary B. Furasova, Aleksandra D. Choquesillo-Lazarte, Duane Olivera-Pastor, Pascual Cabeza, Aurelio ACS Appl Mater Interfaces [Image: see text] Phase transformation dynamics and proton conduction properties are reported for cationic layer-featured coordination polymers derived from the combination of lanthanide ions (Ln(3+)) with nitrilo-tris(methylenephosphonic acid) (H(6)NMP) in the presence of sulfate ions. Two families of materials are isolated and structurally characterized, i.e., [Ln(2)(H(4)NMP)(2)(H(2)O)(4)](HSO(4))(2)·nH(2)O (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb; n = 4–5, Series I) and [Ln(H(5)NMP)]SO(4)·2H(2)O (Ln = Pr, Nd, Eu, Gd, Tb; Series II). Eu/Tb bimetallic solid solutions are also prepared for photoluminescence studies. Members of families I and II display high proton conductivity (10(–3) and 10(–2) S·cm(–1) at 80 °C and 95% relative humidity) and are studied as fillers for Nafion-based composite membranes in PEMFCs, under operating conditions. Composite membranes exhibit higher power and current densities than the pristine Nafion membrane working in the range of 70–90 °C and 100% relative humidity and with similar proton conductivity. American Chemical Society 2021-03-25 2021-04-07 /pmc/articles/PMC8610370/ /pubmed/33764728 http://dx.doi.org/10.1021/acsami.1c01441 Text en © 2021 American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Salcedo, Inés R.
Colodrero, Rosario M. P.
Bazaga-García, Montse
López-González, M.
del Río, Carmen
Xanthopoulos, Konstantinos
Demadis, Konstantinos D.
Hix, Gary B.
Furasova, Aleksandra D.
Choquesillo-Lazarte, Duane
Olivera-Pastor, Pascual
Cabeza, Aurelio
Phase Transformation Dynamics in Sulfate-Loaded Lanthanide Triphosphonates. Proton Conductivity and Application as Fillers in PEMFCs
title Phase Transformation Dynamics in Sulfate-Loaded Lanthanide Triphosphonates. Proton Conductivity and Application as Fillers in PEMFCs
title_full Phase Transformation Dynamics in Sulfate-Loaded Lanthanide Triphosphonates. Proton Conductivity and Application as Fillers in PEMFCs
title_fullStr Phase Transformation Dynamics in Sulfate-Loaded Lanthanide Triphosphonates. Proton Conductivity and Application as Fillers in PEMFCs
title_full_unstemmed Phase Transformation Dynamics in Sulfate-Loaded Lanthanide Triphosphonates. Proton Conductivity and Application as Fillers in PEMFCs
title_short Phase Transformation Dynamics in Sulfate-Loaded Lanthanide Triphosphonates. Proton Conductivity and Application as Fillers in PEMFCs
title_sort phase transformation dynamics in sulfate-loaded lanthanide triphosphonates. proton conductivity and application as fillers in pemfcs
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610370/
https://www.ncbi.nlm.nih.gov/pubmed/33764728
http://dx.doi.org/10.1021/acsami.1c01441
work_keys_str_mv AT salcedoinesr phasetransformationdynamicsinsulfateloadedlanthanidetriphosphonatesprotonconductivityandapplicationasfillersinpemfcs
AT colodrerorosariomp phasetransformationdynamicsinsulfateloadedlanthanidetriphosphonatesprotonconductivityandapplicationasfillersinpemfcs
AT bazagagarciamontse phasetransformationdynamicsinsulfateloadedlanthanidetriphosphonatesprotonconductivityandapplicationasfillersinpemfcs
AT lopezgonzalezm phasetransformationdynamicsinsulfateloadedlanthanidetriphosphonatesprotonconductivityandapplicationasfillersinpemfcs
AT delriocarmen phasetransformationdynamicsinsulfateloadedlanthanidetriphosphonatesprotonconductivityandapplicationasfillersinpemfcs
AT xanthopouloskonstantinos phasetransformationdynamicsinsulfateloadedlanthanidetriphosphonatesprotonconductivityandapplicationasfillersinpemfcs
AT demadiskonstantinosd phasetransformationdynamicsinsulfateloadedlanthanidetriphosphonatesprotonconductivityandapplicationasfillersinpemfcs
AT hixgaryb phasetransformationdynamicsinsulfateloadedlanthanidetriphosphonatesprotonconductivityandapplicationasfillersinpemfcs
AT furasovaaleksandrad phasetransformationdynamicsinsulfateloadedlanthanidetriphosphonatesprotonconductivityandapplicationasfillersinpemfcs
AT choquesillolazarteduane phasetransformationdynamicsinsulfateloadedlanthanidetriphosphonatesprotonconductivityandapplicationasfillersinpemfcs
AT oliverapastorpascual phasetransformationdynamicsinsulfateloadedlanthanidetriphosphonatesprotonconductivityandapplicationasfillersinpemfcs
AT cabezaaurelio phasetransformationdynamicsinsulfateloadedlanthanidetriphosphonatesprotonconductivityandapplicationasfillersinpemfcs