Cargando…
Opportunities for Understanding MS Mechanisms and Progression With MRI Using Large-Scale Data Sharing and Artificial Intelligence
Patients with multiple sclerosis (MS) have heterogeneous clinical presentations, symptoms, and progression over time, making MS difficult to assess and comprehend in vivo. The combination of large-scale data sharing and artificial intelligence creates new opportunities for monitoring and understandi...
Autores principales: | Vrenken, Hugo, Jenkinson, Mark, Pham, Dzung L., Guttmann, Charles R.G., Pareto, Deborah, Paardekooper, Michel, de Sitter, Alexandra, Rocca, Maria A., Wottschel, Viktor, Cardoso, M. Jorge, Barkhof, Frederik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610621/ https://www.ncbi.nlm.nih.gov/pubmed/34607924 http://dx.doi.org/10.1212/WNL.0000000000012884 |
Ejemplares similares
-
MAGNIMS recommendations for harmonization of MRI data in MS multicenter studies
por: De Stefano, Nicola, et al.
Publicado: (2022) -
Development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: Towards accelerated semi-automated references
por: de Sitter, Alexandra, et al.
Publicado: (2021) -
Urgent challenges in quantification and interpretation of brain grey matter atrophy in individual MS patients using MRI
por: Amiri, Houshang, et al.
Publicado: (2018) -
Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort
por: de Sitter, Alexandra, et al.
Publicado: (2020) -
Agreement of MSmetrix with established methods for measuring cross-sectional and longitudinal brain atrophy
por: Steenwijk, Martijn D., et al.
Publicado: (2017)