Cargando…
Mental Health Monitoring Based on Multiperception Intelligent Wearable Devices
In order to improve the accuracy of the evaluation results of multiperception intelligent wearable devices, the mathematical statistical characteristics based on speech, behavior, environment, and physical signs are proposed; first, the PCA feature compression algorithm was used to reduce the dimens...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610667/ https://www.ncbi.nlm.nih.gov/pubmed/34867114 http://dx.doi.org/10.1155/2021/8307576 |
_version_ | 1784603137414266880 |
---|---|
author | Dai, Xichao Ding, Yumei |
author_facet | Dai, Xichao Ding, Yumei |
author_sort | Dai, Xichao |
collection | PubMed |
description | In order to improve the accuracy of the evaluation results of multiperception intelligent wearable devices, the mathematical statistical characteristics based on speech, behavior, environment, and physical signs are proposed; first, the PCA feature compression algorithm was used to reduce the dimension of these features, and the differences among different training samples were compared and analyzed; then, three weak classifiers are designed using the logistic regression algorithm, and finally, a strong classifier with higher prediction accuracy is designed according to the boosting decision fusion method and ensemble learning idea. The results showed that the accuracy of the logistic regression model trained with the feature data of voice PCA was 0.964, but the recall rate and crossover results were significantly reduced to 0.844 and 0.846, respectively. The accuracy, accuracy and recall of the decision fusion model based on the boosting method and integrated learning are 0.969, and the prediction accuracy of K-folds cross-validation is also as high as 0.956; the superposition fusion results of three weak classifiers achieve a better classification effect. |
format | Online Article Text |
id | pubmed-8610667 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-86106672021-12-03 Mental Health Monitoring Based on Multiperception Intelligent Wearable Devices Dai, Xichao Ding, Yumei Contrast Media Mol Imaging Research Article In order to improve the accuracy of the evaluation results of multiperception intelligent wearable devices, the mathematical statistical characteristics based on speech, behavior, environment, and physical signs are proposed; first, the PCA feature compression algorithm was used to reduce the dimension of these features, and the differences among different training samples were compared and analyzed; then, three weak classifiers are designed using the logistic regression algorithm, and finally, a strong classifier with higher prediction accuracy is designed according to the boosting decision fusion method and ensemble learning idea. The results showed that the accuracy of the logistic regression model trained with the feature data of voice PCA was 0.964, but the recall rate and crossover results were significantly reduced to 0.844 and 0.846, respectively. The accuracy, accuracy and recall of the decision fusion model based on the boosting method and integrated learning are 0.969, and the prediction accuracy of K-folds cross-validation is also as high as 0.956; the superposition fusion results of three weak classifiers achieve a better classification effect. Hindawi 2021-11-16 /pmc/articles/PMC8610667/ /pubmed/34867114 http://dx.doi.org/10.1155/2021/8307576 Text en Copyright © 2021 Xichao Dai and Yumei Ding. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Dai, Xichao Ding, Yumei Mental Health Monitoring Based on Multiperception Intelligent Wearable Devices |
title | Mental Health Monitoring Based on Multiperception Intelligent Wearable Devices |
title_full | Mental Health Monitoring Based on Multiperception Intelligent Wearable Devices |
title_fullStr | Mental Health Monitoring Based on Multiperception Intelligent Wearable Devices |
title_full_unstemmed | Mental Health Monitoring Based on Multiperception Intelligent Wearable Devices |
title_short | Mental Health Monitoring Based on Multiperception Intelligent Wearable Devices |
title_sort | mental health monitoring based on multiperception intelligent wearable devices |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610667/ https://www.ncbi.nlm.nih.gov/pubmed/34867114 http://dx.doi.org/10.1155/2021/8307576 |
work_keys_str_mv | AT daixichao mentalhealthmonitoringbasedonmultiperceptionintelligentwearabledevices AT dingyumei mentalhealthmonitoringbasedonmultiperceptionintelligentwearabledevices |