Cargando…

Design and analysis of Maxwell fisheye lens based beamformer

Antenna arrays and multi-antenna systems are essential in beyond 5G wireless networks for providing wireless connectivity, especially in the context of Internet-of-Everything. To facilitate this requirement, beamforming technology is emerging as a key enabling solution for adaptive on-demand wireles...

Descripción completa

Detalles Bibliográficos
Autores principales: Abbasi, Muhammad Ali Babar, Ansari, Rafay I., Machado, Gabriel G., Fusco, Vincent F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8610995/
https://www.ncbi.nlm.nih.gov/pubmed/34815440
http://dx.doi.org/10.1038/s41598-021-02058-9
Descripción
Sumario:Antenna arrays and multi-antenna systems are essential in beyond 5G wireless networks for providing wireless connectivity, especially in the context of Internet-of-Everything. To facilitate this requirement, beamforming technology is emerging as a key enabling solution for adaptive on-demand wireless coverage. Despite digital beamforming being the primary choice for adaptive wireless coverage, a set of applications rely on pure analogue beamforming approaches, e.g., in point-to-multi point and physical-layer secure communication links. In this work, we present a novel scalable analogue beamforming hardware architecture that is capable of adaptive 2.5-dimensional beam steering and beam shaping to fulfil the coverage requirements. Beamformer hardware comprises of a finite size Maxwell fisheye lens used as a scalable feed network solution for a semi-circular array of monopole antennas. This unique hardware architecture enables a flexibility of using 2 to 8 antenna elements. Beamformer development stages are presented while experimental beam steering and beam shaping results show good agreement with the estimated performance.