Cargando…
Improved YOLOv4-tiny network for real-time electronic component detection
In the electronics industry environment, rapid recognition of objects to be grasped from digital images is essential for visual guidance of intelligent robots. However, electronic components have a small size, are difficult to distinguish, and are in motion on a conveyor belt, making target detectio...
Autores principales: | Guo, Ce, Lv, Xiao-ling, Zhang, Yan, Zhang, Ming-lu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611011/ https://www.ncbi.nlm.nih.gov/pubmed/34815490 http://dx.doi.org/10.1038/s41598-021-02225-y |
Ejemplares similares
-
Real-time jellyfish classification and detection algorithm based on improved YOLOv4-tiny and improved underwater image enhancement algorithm
por: Gao, Meijing, et al.
Publicado: (2023) -
Improved YOLOv4-tiny based on attention mechanism for skin detection
por: Li, Ping, et al.
Publicado: (2023) -
Accuracy vs. Energy: An Assessment of Bee Object Inference in Videos from On-Hive Video Loggers with YOLOv3, YOLOv4-Tiny, and YOLOv7-Tiny
por: Kulyukin, Vladimir A., et al.
Publicado: (2023) -
TIA-YOLOv5: An improved YOLOv5 network for real-time detection of crop and weed in the field
por: Wang, Aichen, et al.
Publicado: (2022) -
An efficient tomato-detection method based on improved YOLOv4-tiny model in complex environment
por: Mbouembe, Philippe Lyonel Touko, et al.
Publicado: (2023)