Cargando…
Automatic parcellation of resting-state cortical dynamics by iterative community detection and similarity measurements
To investigate the properties of a large-scale brain network, it is a common practice to reduce the dimension of resting state functional magnetic resonance imaging (rs-fMRI) data to tens to hundreds of nodes. This study presents an analytic streamline that incorporates modular analysis and similari...
Autores principales: | Lee, Tien-Wen, Tramontano, Gerald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611189/ https://www.ncbi.nlm.nih.gov/pubmed/34877403 http://dx.doi.org/10.3934/Neuroscience.2021028 |
Ejemplares similares
-
Parcellating an Individual Subject's Cortical and Subcortical Brain Structures Using Snowball Sampling of Resting-State Correlations
por: Wig, Gagan S., et al.
Publicado: (2014) -
Inter-subject and inter-parcellation variability of resting-state whole-brain dynamical modeling
por: Popovych, Oleksandr V., et al.
Publicado: (2021) -
Parcellating Cortical Functional Networks in Individuals
por: Wang, Danhong, et al.
Publicado: (2015) -
Unrevealing Reliable Cortical Parcellation of Individual Brains Using Resting-State Functional Magnetic Resonance Imaging and Masked Graph Convolutions
por: Qiu, Wenyuan, et al.
Publicado: (2022) -
Robust brain parcellation using sparse representation on resting-state fMRI
por: Zhang, Yu, et al.
Publicado: (2014)