Cargando…
Feasibility of Radiomics to Differentiate Coronavirus Disease 2019 (COVID-19) from H1N1 Influenza Pneumonia on Chest Computed Tomography: A Proof of Concept
BACKGROUND: Chest computed tomography (CT) plays an essential role in diagnosing coronavirus disease 2019 (COVID-19). However, CT findings are often nonspecific among different viral pneumonia conditions. The differentiation between COVID-19 and influenza can be challenging when seasonal influenza c...
Autores principales: | Tabatabaei, Mohsen, Tasorian, Baharak, Goyal, Manu, Moini, Abdollatif, Sotoudeh, Houman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shiraz University of Medical Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611216/ https://www.ncbi.nlm.nih.gov/pubmed/34840382 http://dx.doi.org/10.30476/ijms.2021.88036.1858 |
Ejemplares similares
-
Artificial Intelligence Empowers Radiologists to Differentiate Pneumonia Induced by COVID-19 versus Influenza Viruses
por: Sotoudeh, Houman, et al.
Publicado: (2020) -
Accuracy of Machine Learning Models to Predict Mortality in COVID-19 Infection Using the Clinical and Laboratory Data at the Time of Admission
por: Tabatabaie, Mohsen, et al.
Publicado: (2021) -
The Role of Machine Learning and Radiomics for Treatment Response Prediction in Idiopathic Normal Pressure Hydrocephalus
por: Sotoudeh, Houman, et al.
Publicado: (2021) -
Emerging Applications of Radiomics in Neurological Disorders: A Review
por: Sotoudeh, Houman, et al.
Publicado: (2021) -
Radiomics Outperforms Clinical and Radiologic Signs in Predicting Spontaneous Basal Ganglia Hematoma Expansion: A Pilot Study
por: Rezaei, Ali, et al.
Publicado: (2023)