Cargando…

MiR-148a-3p Regulates the Invasion and Odontoblastic Differentiation of Human Dental Pulp Stem Cells via the Wnt1/β-Catenin Pathway

BACKGROUND AND OBJECTIVES: MiR-148a-3p has been reported to regulate the differentiation of marrow stromal cell osteoblast. In this study, whether miR-148a-3p regulated the odontoblastic differentiation of human dental pulp stem cells (hDPSCs) or not was explored. METHODS AND RESULTS: The hDPSCs wer...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qiong, Huang, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Stem Cell Research 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611305/
https://www.ncbi.nlm.nih.gov/pubmed/34456188
http://dx.doi.org/10.15283/ijsc20118
_version_ 1784603268008116224
author Li, Qiong
Huang, Lei
author_facet Li, Qiong
Huang, Lei
author_sort Li, Qiong
collection PubMed
description BACKGROUND AND OBJECTIVES: MiR-148a-3p has been reported to regulate the differentiation of marrow stromal cell osteoblast. In this study, whether miR-148a-3p regulated the odontoblastic differentiation of human dental pulp stem cells (hDPSCs) or not was explored. METHODS AND RESULTS: The hDPSCs were isolated and identified via flow cytometry. Targets of miR-148a-3p were identified via bioinformatics and dual-luciferase reporter assay. After the cell was cultured in the odontogenic differentiation medium or infected, cell viability, invasion, and odontoblastic differentiation were detected via MTT, transwell, and Alizarin Red S staining, respectively. The miR-148a-3p, Wnt1, β-catenin, DSPP, DMP-1, RUNX2, OCN, and Smad4 expressions were determined by RT-qPCR and Western blot. The hDPSCs odontoblastic differentiation downregulated the miR-148a-3p expression and upregulated Wnt1 expression. Wnt1 was determined as the target for miR-148a-3p. MiR-148a-3p mimic and siWnt1 suppressed the cell viability, invasion, and odontoblastic differentiation of hDPSCs and inhibited the Wnt1, β-catenin, DSPP, DMP-1, RUNX2, OCN, and Smad4 expressions. In contrast, miR-148a-3p inhibitor and overexpressed Wnt1 promoted the cell viability, invasion, and odontoblastic differentiation of hDPSCs, and upregulated the Wnt1, β-catenin, DSPP, DMP-1, RUNX2, OCN, and Smad4 expressions. Also, miR-148a-3p mimic and inhibitor reversed the effects of Wnt1 overexpression and siWnt1. CONCLUSIONS: MiR-148a-3p modulated the invasion and odontoblastic differentiation of hDPSCs through the Wnt1/β-catenin pathway.
format Online
Article
Text
id pubmed-8611305
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Korean Society for Stem Cell Research
record_format MEDLINE/PubMed
spelling pubmed-86113052021-12-06 MiR-148a-3p Regulates the Invasion and Odontoblastic Differentiation of Human Dental Pulp Stem Cells via the Wnt1/β-Catenin Pathway Li, Qiong Huang, Lei Int J Stem Cells Original Article BACKGROUND AND OBJECTIVES: MiR-148a-3p has been reported to regulate the differentiation of marrow stromal cell osteoblast. In this study, whether miR-148a-3p regulated the odontoblastic differentiation of human dental pulp stem cells (hDPSCs) or not was explored. METHODS AND RESULTS: The hDPSCs were isolated and identified via flow cytometry. Targets of miR-148a-3p were identified via bioinformatics and dual-luciferase reporter assay. After the cell was cultured in the odontogenic differentiation medium or infected, cell viability, invasion, and odontoblastic differentiation were detected via MTT, transwell, and Alizarin Red S staining, respectively. The miR-148a-3p, Wnt1, β-catenin, DSPP, DMP-1, RUNX2, OCN, and Smad4 expressions were determined by RT-qPCR and Western blot. The hDPSCs odontoblastic differentiation downregulated the miR-148a-3p expression and upregulated Wnt1 expression. Wnt1 was determined as the target for miR-148a-3p. MiR-148a-3p mimic and siWnt1 suppressed the cell viability, invasion, and odontoblastic differentiation of hDPSCs and inhibited the Wnt1, β-catenin, DSPP, DMP-1, RUNX2, OCN, and Smad4 expressions. In contrast, miR-148a-3p inhibitor and overexpressed Wnt1 promoted the cell viability, invasion, and odontoblastic differentiation of hDPSCs, and upregulated the Wnt1, β-catenin, DSPP, DMP-1, RUNX2, OCN, and Smad4 expressions. Also, miR-148a-3p mimic and inhibitor reversed the effects of Wnt1 overexpression and siWnt1. CONCLUSIONS: MiR-148a-3p modulated the invasion and odontoblastic differentiation of hDPSCs through the Wnt1/β-catenin pathway. Korean Society for Stem Cell Research 2021-08-31 /pmc/articles/PMC8611305/ /pubmed/34456188 http://dx.doi.org/10.15283/ijsc20118 Text en Copyright © 2021 by the Korean Society for Stem Cell Research https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0 (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Li, Qiong
Huang, Lei
MiR-148a-3p Regulates the Invasion and Odontoblastic Differentiation of Human Dental Pulp Stem Cells via the Wnt1/β-Catenin Pathway
title MiR-148a-3p Regulates the Invasion and Odontoblastic Differentiation of Human Dental Pulp Stem Cells via the Wnt1/β-Catenin Pathway
title_full MiR-148a-3p Regulates the Invasion and Odontoblastic Differentiation of Human Dental Pulp Stem Cells via the Wnt1/β-Catenin Pathway
title_fullStr MiR-148a-3p Regulates the Invasion and Odontoblastic Differentiation of Human Dental Pulp Stem Cells via the Wnt1/β-Catenin Pathway
title_full_unstemmed MiR-148a-3p Regulates the Invasion and Odontoblastic Differentiation of Human Dental Pulp Stem Cells via the Wnt1/β-Catenin Pathway
title_short MiR-148a-3p Regulates the Invasion and Odontoblastic Differentiation of Human Dental Pulp Stem Cells via the Wnt1/β-Catenin Pathway
title_sort mir-148a-3p regulates the invasion and odontoblastic differentiation of human dental pulp stem cells via the wnt1/β-catenin pathway
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611305/
https://www.ncbi.nlm.nih.gov/pubmed/34456188
http://dx.doi.org/10.15283/ijsc20118
work_keys_str_mv AT liqiong mir148a3pregulatestheinvasionandodontoblasticdifferentiationofhumandentalpulpstemcellsviathewnt1bcateninpathway
AT huanglei mir148a3pregulatestheinvasionandodontoblasticdifferentiationofhumandentalpulpstemcellsviathewnt1bcateninpathway