Cargando…
The Progress of Medical Image Semantic Segmentation Methods for Application in COVID-19 Detection
Image medical semantic segmentation has been employed in various areas, including medical imaging, computer vision, and intelligent transportation. In this study, the method of semantic segmenting images is split into two sections: the method of the deep neural network and previous traditional metho...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611358/ https://www.ncbi.nlm.nih.gov/pubmed/34840563 http://dx.doi.org/10.1155/2021/7265644 |
_version_ | 1784603278646968320 |
---|---|
author | Valizadeh, Amin Shariatee, Morteza |
author_facet | Valizadeh, Amin Shariatee, Morteza |
author_sort | Valizadeh, Amin |
collection | PubMed |
description | Image medical semantic segmentation has been employed in various areas, including medical imaging, computer vision, and intelligent transportation. In this study, the method of semantic segmenting images is split into two sections: the method of the deep neural network and previous traditional method. The traditional method and the published dataset for segmentation are reviewed in the first step. The presented aspects, including all-convolution network, sampling methods, FCN connector with CRF methods, extended convolutional neural network methods, improvements in network structure, pyramid methods, multistage and multifeature methods, supervised methods, semiregulatory methods, and nonregulatory methods, are then thoroughly explored in current methods based on the deep neural network. Finally, a general conclusion on the use of developed advances based on deep neural network concepts in semantic segmentation is presented. |
format | Online Article Text |
id | pubmed-8611358 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-86113582021-11-25 The Progress of Medical Image Semantic Segmentation Methods for Application in COVID-19 Detection Valizadeh, Amin Shariatee, Morteza Comput Intell Neurosci Review Article Image medical semantic segmentation has been employed in various areas, including medical imaging, computer vision, and intelligent transportation. In this study, the method of semantic segmenting images is split into two sections: the method of the deep neural network and previous traditional method. The traditional method and the published dataset for segmentation are reviewed in the first step. The presented aspects, including all-convolution network, sampling methods, FCN connector with CRF methods, extended convolutional neural network methods, improvements in network structure, pyramid methods, multistage and multifeature methods, supervised methods, semiregulatory methods, and nonregulatory methods, are then thoroughly explored in current methods based on the deep neural network. Finally, a general conclusion on the use of developed advances based on deep neural network concepts in semantic segmentation is presented. Hindawi 2021-11-22 /pmc/articles/PMC8611358/ /pubmed/34840563 http://dx.doi.org/10.1155/2021/7265644 Text en Copyright © 2021 Amin Valizadeh and Morteza Shariatee. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Valizadeh, Amin Shariatee, Morteza The Progress of Medical Image Semantic Segmentation Methods for Application in COVID-19 Detection |
title | The Progress of Medical Image Semantic Segmentation Methods for Application in COVID-19 Detection |
title_full | The Progress of Medical Image Semantic Segmentation Methods for Application in COVID-19 Detection |
title_fullStr | The Progress of Medical Image Semantic Segmentation Methods for Application in COVID-19 Detection |
title_full_unstemmed | The Progress of Medical Image Semantic Segmentation Methods for Application in COVID-19 Detection |
title_short | The Progress of Medical Image Semantic Segmentation Methods for Application in COVID-19 Detection |
title_sort | progress of medical image semantic segmentation methods for application in covid-19 detection |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611358/ https://www.ncbi.nlm.nih.gov/pubmed/34840563 http://dx.doi.org/10.1155/2021/7265644 |
work_keys_str_mv | AT valizadehamin theprogressofmedicalimagesemanticsegmentationmethodsforapplicationincovid19detection AT shariateemorteza theprogressofmedicalimagesemanticsegmentationmethodsforapplicationincovid19detection AT valizadehamin progressofmedicalimagesemanticsegmentationmethodsforapplicationincovid19detection AT shariateemorteza progressofmedicalimagesemanticsegmentationmethodsforapplicationincovid19detection |