Cargando…
Effects of therapeutic plasma exchange on the endothelial glycocalyx in septic shock
BACKGROUND: Disruption of the endothelial glycocalyx (eGC) is observed in septic patients and its injury is associated with multiple-organ failure and inferior outcomes. Besides this biomarker function, increased blood concentrations of shedded eGC constituents might play a mechanistic role in septi...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611389/ https://www.ncbi.nlm.nih.gov/pubmed/34817751 http://dx.doi.org/10.1186/s40635-021-00417-4 |
Sumario: | BACKGROUND: Disruption of the endothelial glycocalyx (eGC) is observed in septic patients and its injury is associated with multiple-organ failure and inferior outcomes. Besides this biomarker function, increased blood concentrations of shedded eGC constituents might play a mechanistic role in septic organ failure. We hypothesized that therapeutic plasma exchange (TPE) using fresh frozen plasma might influence eGC-related pathology by removing injurious mediators of eGC breakdown while at the time replacing eGC protective factors. METHODS: We enrolled 20 norepinephrine-dependent (NE > 0.4 μg/kg/min) patients with early septic shock (onset < 12 h). Sublingual assessment of the eGC via sublingual sidestream darkfield (SDF) imaging was performed. Plasma eGC degradation products, such as heparan sulfate (HS) and the eGC-regulating enzymes, heparanase (Hpa)-1 and Hpa-2, were obtained before and after TPE. A 3D microfluidic flow assay was performed to examine the effect of TPE on eGC ex vivo. Results were compared to healthy controls. RESULTS: SDF demonstrated a decrease in eGC thickness in septic patients compared to healthy individuals (p = 0.001). Circulating HS levels were increased more than sixfold compared to controls and decreased significantly following TPE [controls: 16.9 (8–18.6) vs. septic patients before TPE: 105.8 (30.8–143.4) μg/ml, p < 0.001; vs. after TPE: 70.7 (36.9–109.5) μg/ml, p < 0.001]. The Hpa-2 /Hpa-1 ratio was reduced in septic patients before TPE but normalized after TPE [controls: 13.6 (6.2–21.2) vs. septic patients at inclusion: 2.9 (2.1–5.7), p = 0.001; vs. septic patients after TPE: 13.2 (11.2–31.8), p < 0.001]. Ex vivo stimulation of endothelial cells with serum from a septic patient induced eGC damage that could be attenuated with serum from the same patient following TPE. CONCLUSIONS: Septic shock results in profound degradation of the eGC and an acquired deficiency of the protective regulator Hpa-2. TPE removed potentially injurious eGC degradation products and partially attenuated Hpa-2 deficiency. Trial registration clinicaltrials.gov NCT04231994, retrospectively registered 18 January 2020 SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40635-021-00417-4. |
---|