Cargando…
Screening and Understanding Li Adsorption on Two-Dimensional Metallic Materials by Learning Physics and Physics-Simplified Learning
[Image: see text] Understanding and broad screening Li interaction energetics with surfaces are key to the development of materials for a wide range of applications including Li-based electrochemical capacitors, Li sensors, Li separation membranes, and Li-ion batteries. In this work, we build a high...
Autores principales: | Gong, Sheng, Wang, Shuo, Zhu, Taishan, Chen, Xi, Yang, Zhenze, Buehler, Markus J., Shao-Horn, Yang, Grossman, Jeffrey C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611661/ https://www.ncbi.nlm.nih.gov/pubmed/34841409 http://dx.doi.org/10.1021/jacsau.1c00260 |
Ejemplares similares
-
Deep learning model to predict complex stress and strain fields in hierarchical composites
por: Yang, Zhenze, et al.
Publicado: (2021) -
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
por: Xie, Tian, et al.
Publicado: (2019) -
Calibrating DFT Formation
Enthalpy Calculations by
Multifidelity Machine Learning
por: Gong, Sheng, et al.
Publicado: (2022) -
Scikit-learn: machine learning simplified
por: Garreta, Raúl, et al.
Publicado: (2017) -
Integration of Machine Learning and Coarse-Grained Molecular Simulations for Polymer Materials: Physical Understandings and Molecular Design
por: Nguyen, Danh, et al.
Publicado: (2022)