Cargando…
Luminescent First-Row Transition Metal Complexes
[Image: see text] Precious and rare elements have traditionally dominated inorganic photophysics and photochemistry, but now we are witnessing a paradigm shift toward cheaper and more abundant metals. Even though emissive complexes based on selected first-row transition metals have long been known,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611671/ https://www.ncbi.nlm.nih.gov/pubmed/34841405 http://dx.doi.org/10.1021/jacsau.1c00353 |
Sumario: | [Image: see text] Precious and rare elements have traditionally dominated inorganic photophysics and photochemistry, but now we are witnessing a paradigm shift toward cheaper and more abundant metals. Even though emissive complexes based on selected first-row transition metals have long been known, recent conceptual breakthroughs revealed that a much broader range of elements in different oxidation states are useable for this purpose. Coordination compounds of V, Cr, Mn, Fe, Co, Ni, and Cu now show electronically excited states with unexpected reactivity and photoluminescence behavior. Aside from providing a compact survey of the recent conceptual key advances in this dynamic field, our Perspective identifies the main design strategies that enabled the discovery of fundamentally new types of 3d-metal-based luminophores and photosensitizers operating in solution at room temperature. |
---|