Cargando…
Meta-learning prediction of physical and chemical properties of magnetized water and fertilizer based on LSTM
BACKGROUND: Due to the high cost of data collection for magnetization detection of media, the sample size is limited, it is not suitable to use deep learning method to predict its change trend. The prediction of physical and chemical properties of magnetized water and fertilizer (PCPMWF) by meta-lea...
Autores principales: | Nie, Jing, Wang, Nianyi, Li, Jingbin, Wang, Kang, Wang, Hongkun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611850/ https://www.ncbi.nlm.nih.gov/pubmed/34819082 http://dx.doi.org/10.1186/s13007-021-00818-2 |
Ejemplares similares
-
Prediction of Liquid Magnetization Series Data in Agriculture Based on Enhanced CGAN
por: Nie, Jing, et al.
Publicado: (2022) -
A Method to Predict CO(2) Mass Concentration in Sheep Barns Based on the RF-PSO-LSTM Model
por: Cen, Honglei, et al.
Publicado: (2023) -
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
por: Shahid, Farah, et al.
Publicado: (2020) -
Air quality prediction model based on mRMR–RF feature selection and ISSA–LSTM
por: Wu, Huiyong, et al.
Publicado: (2023) -
Molecular Property Prediction by Combining LSTM and GAT
por: Xu, Lei, et al.
Publicado: (2023)