Cargando…
Predicting the hosts of prokaryotic viruses using GCN-based semi-supervised learning
BACKGROUND: Prokaryotic viruses, which infect bacteria and archaea, are the most abundant and diverse biological entities in the biosphere. To understand their regulatory roles in various ecosystems and to harness the potential of bacteriophages for use in therapy, more knowledge of viral-host relat...
Autores principales: | Shang, Jiayu, Sun, Yanni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611875/ https://www.ncbi.nlm.nih.gov/pubmed/34819064 http://dx.doi.org/10.1186/s12915-021-01180-4 |
Ejemplares similares
-
IILLS: predicting virus-receptor interactions based on similarity and semi-supervised learning
por: Yan, Cheng, et al.
Publicado: (2019) -
Prokaryotic virus host predictor: a Gaussian model for host prediction of prokaryotic viruses in metagenomics
por: Lu, Congyu, et al.
Publicado: (2021) -
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
por: Chen, Jiarui, et al.
Publicado: (2021) -
Semi‐supervised classification of fundus images combined with CNN and GCN
por: Duan, Sixu, et al.
Publicado: (2022) -
Robust identification of molecular phenotypes using semi-supervised learning
por: Roder, Heinrich, et al.
Publicado: (2019)