Cargando…
Are we there yet? A machine learning architecture to predict organotropic metastases
BACKGROUND & AIMS: Cancer metastasis into distant organs is an evolutionarily selective process. A better understanding of the driving forces endowing proliferative plasticity of tumor seeds in distant soils is required to develop and adapt better treatment systems for this lethal stage of the d...
Autores principales: | Skaro, Michael, Hill, Marcus, Zhou, Yi, Quinn, Shannon, Davis, Melissa B., Sboner, Andrea, Murph, Mandi, Arnold, Jonathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611885/ https://www.ncbi.nlm.nih.gov/pubmed/34819069 http://dx.doi.org/10.1186/s12920-021-01122-7 |
Ejemplares similares
-
Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors
por: Jiang, Biaobin, et al.
Publicado: (2021) -
Privacy-preserving architecture for providing feedback to clinicians on their clinical performance
por: Yigzaw, Kassaye Yitbarek, et al.
Publicado: (2020) -
Mechanisms of T cell organotropism
por: Fu, Hongmei, et al.
Publicado: (2016) -
Clinical efficacy and safety of bone cement combined with radiofrequency ablation in the treatment of spinal metastases
por: Lv, Nanning, et al.
Publicado: (2020) -
Pheno‐Deep Counter: a unified and versatile deep learning architecture for leaf counting
por: Giuffrida, Mario Valerio, et al.
Publicado: (2018)