Cargando…
Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease
BACKGROUND: Although convolutional neural networks (CNNs) achieve high diagnostic accuracy for detecting Alzheimer’s disease (AD) dementia based on magnetic resonance imaging (MRI) scans, they are not yet applied in clinical routine. One important reason for this is a lack of model comprehensibility...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611898/ https://www.ncbi.nlm.nih.gov/pubmed/34814936 http://dx.doi.org/10.1186/s13195-021-00924-2 |
_version_ | 1784603380882079744 |
---|---|
author | Dyrba, Martin Hanzig, Moritz Altenstein, Slawek Bader, Sebastian Ballarini, Tommaso Brosseron, Frederic Buerger, Katharina Cantré, Daniel Dechent, Peter Dobisch, Laura Düzel, Emrah Ewers, Michael Fliessbach, Klaus Glanz, Wenzel Haynes, John-Dylan Heneka, Michael T. Janowitz, Daniel Keles, Deniz B. Kilimann, Ingo Laske, Christoph Maier, Franziska Metzger, Coraline D. Munk, Matthias H. Perneczky, Robert Peters, Oliver Preis, Lukas Priller, Josef Rauchmann, Boris Roy, Nina Scheffler, Klaus Schneider, Anja Schott, Björn H. Spottke, Annika Spruth, Eike J. Weber, Marc-André Ertl-Wagner, Birgit Wagner, Michael Wiltfang, Jens Jessen, Frank Teipel, Stefan J. |
author_facet | Dyrba, Martin Hanzig, Moritz Altenstein, Slawek Bader, Sebastian Ballarini, Tommaso Brosseron, Frederic Buerger, Katharina Cantré, Daniel Dechent, Peter Dobisch, Laura Düzel, Emrah Ewers, Michael Fliessbach, Klaus Glanz, Wenzel Haynes, John-Dylan Heneka, Michael T. Janowitz, Daniel Keles, Deniz B. Kilimann, Ingo Laske, Christoph Maier, Franziska Metzger, Coraline D. Munk, Matthias H. Perneczky, Robert Peters, Oliver Preis, Lukas Priller, Josef Rauchmann, Boris Roy, Nina Scheffler, Klaus Schneider, Anja Schott, Björn H. Spottke, Annika Spruth, Eike J. Weber, Marc-André Ertl-Wagner, Birgit Wagner, Michael Wiltfang, Jens Jessen, Frank Teipel, Stefan J. |
author_sort | Dyrba, Martin |
collection | PubMed |
description | BACKGROUND: Although convolutional neural networks (CNNs) achieve high diagnostic accuracy for detecting Alzheimer’s disease (AD) dementia based on magnetic resonance imaging (MRI) scans, they are not yet applied in clinical routine. One important reason for this is a lack of model comprehensibility. Recently developed visualization methods for deriving CNN relevance maps may help to fill this gap as they allow the visualization of key input image features that drive the decision of the model. We investigated whether models with higher accuracy also rely more on discriminative brain regions predefined by prior knowledge. METHODS: We trained a CNN for the detection of AD in N = 663 T1-weighted MRI scans of patients with dementia and amnestic mild cognitive impairment (MCI) and verified the accuracy of the models via cross-validation and in three independent samples including in total N = 1655 cases. We evaluated the association of relevance scores and hippocampus volume to validate the clinical utility of this approach. To improve model comprehensibility, we implemented an interactive visualization of 3D CNN relevance maps, thereby allowing intuitive model inspection. RESULTS: Across the three independent datasets, group separation showed high accuracy for AD dementia versus controls (AUC ≥ 0.91) and moderate accuracy for amnestic MCI versus controls (AUC ≈ 0.74). Relevance maps indicated that hippocampal atrophy was considered the most informative factor for AD detection, with additional contributions from atrophy in other cortical and subcortical regions. Relevance scores within the hippocampus were highly correlated with hippocampal volumes (Pearson’s r ≈ −0.86, p < 0.001). CONCLUSION: The relevance maps highlighted atrophy in regions that we had hypothesized a priori. This strengthens the comprehensibility of the CNN models, which were trained in a purely data-driven manner based on the scans and diagnosis labels. The high hippocampus relevance scores as well as the high performance achieved in independent samples support the validity of the CNN models in the detection of AD-related MRI abnormalities. The presented data-driven and hypothesis-free CNN modeling approach might provide a useful tool to automatically derive discriminative features for complex diagnostic tasks where clear clinical criteria are still missing, for instance for the differential diagnosis between various types of dementia. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13195-021-00924-2. |
format | Online Article Text |
id | pubmed-8611898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-86118982021-11-29 Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease Dyrba, Martin Hanzig, Moritz Altenstein, Slawek Bader, Sebastian Ballarini, Tommaso Brosseron, Frederic Buerger, Katharina Cantré, Daniel Dechent, Peter Dobisch, Laura Düzel, Emrah Ewers, Michael Fliessbach, Klaus Glanz, Wenzel Haynes, John-Dylan Heneka, Michael T. Janowitz, Daniel Keles, Deniz B. Kilimann, Ingo Laske, Christoph Maier, Franziska Metzger, Coraline D. Munk, Matthias H. Perneczky, Robert Peters, Oliver Preis, Lukas Priller, Josef Rauchmann, Boris Roy, Nina Scheffler, Klaus Schneider, Anja Schott, Björn H. Spottke, Annika Spruth, Eike J. Weber, Marc-André Ertl-Wagner, Birgit Wagner, Michael Wiltfang, Jens Jessen, Frank Teipel, Stefan J. Alzheimers Res Ther Research BACKGROUND: Although convolutional neural networks (CNNs) achieve high diagnostic accuracy for detecting Alzheimer’s disease (AD) dementia based on magnetic resonance imaging (MRI) scans, they are not yet applied in clinical routine. One important reason for this is a lack of model comprehensibility. Recently developed visualization methods for deriving CNN relevance maps may help to fill this gap as they allow the visualization of key input image features that drive the decision of the model. We investigated whether models with higher accuracy also rely more on discriminative brain regions predefined by prior knowledge. METHODS: We trained a CNN for the detection of AD in N = 663 T1-weighted MRI scans of patients with dementia and amnestic mild cognitive impairment (MCI) and verified the accuracy of the models via cross-validation and in three independent samples including in total N = 1655 cases. We evaluated the association of relevance scores and hippocampus volume to validate the clinical utility of this approach. To improve model comprehensibility, we implemented an interactive visualization of 3D CNN relevance maps, thereby allowing intuitive model inspection. RESULTS: Across the three independent datasets, group separation showed high accuracy for AD dementia versus controls (AUC ≥ 0.91) and moderate accuracy for amnestic MCI versus controls (AUC ≈ 0.74). Relevance maps indicated that hippocampal atrophy was considered the most informative factor for AD detection, with additional contributions from atrophy in other cortical and subcortical regions. Relevance scores within the hippocampus were highly correlated with hippocampal volumes (Pearson’s r ≈ −0.86, p < 0.001). CONCLUSION: The relevance maps highlighted atrophy in regions that we had hypothesized a priori. This strengthens the comprehensibility of the CNN models, which were trained in a purely data-driven manner based on the scans and diagnosis labels. The high hippocampus relevance scores as well as the high performance achieved in independent samples support the validity of the CNN models in the detection of AD-related MRI abnormalities. The presented data-driven and hypothesis-free CNN modeling approach might provide a useful tool to automatically derive discriminative features for complex diagnostic tasks where clear clinical criteria are still missing, for instance for the differential diagnosis between various types of dementia. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13195-021-00924-2. BioMed Central 2021-11-23 /pmc/articles/PMC8611898/ /pubmed/34814936 http://dx.doi.org/10.1186/s13195-021-00924-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Dyrba, Martin Hanzig, Moritz Altenstein, Slawek Bader, Sebastian Ballarini, Tommaso Brosseron, Frederic Buerger, Katharina Cantré, Daniel Dechent, Peter Dobisch, Laura Düzel, Emrah Ewers, Michael Fliessbach, Klaus Glanz, Wenzel Haynes, John-Dylan Heneka, Michael T. Janowitz, Daniel Keles, Deniz B. Kilimann, Ingo Laske, Christoph Maier, Franziska Metzger, Coraline D. Munk, Matthias H. Perneczky, Robert Peters, Oliver Preis, Lukas Priller, Josef Rauchmann, Boris Roy, Nina Scheffler, Klaus Schneider, Anja Schott, Björn H. Spottke, Annika Spruth, Eike J. Weber, Marc-André Ertl-Wagner, Birgit Wagner, Michael Wiltfang, Jens Jessen, Frank Teipel, Stefan J. Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease |
title | Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease |
title_full | Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease |
title_fullStr | Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease |
title_full_unstemmed | Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease |
title_short | Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease |
title_sort | improving 3d convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in alzheimer’s disease |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611898/ https://www.ncbi.nlm.nih.gov/pubmed/34814936 http://dx.doi.org/10.1186/s13195-021-00924-2 |
work_keys_str_mv | AT dyrbamartin improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT hanzigmoritz improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT altensteinslawek improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT badersebastian improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT ballarinitommaso improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT brosseronfrederic improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT buergerkatharina improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT cantredaniel improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT dechentpeter improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT dobischlaura improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT duzelemrah improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT ewersmichael improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT fliessbachklaus improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT glanzwenzel improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT haynesjohndylan improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT henekamichaelt improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT janowitzdaniel improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT kelesdenizb improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT kilimanningo improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT laskechristoph improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT maierfranziska improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT metzgercoralined improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT munkmatthiash improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT perneczkyrobert improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT petersoliver improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT preislukas improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT prillerjosef improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT rauchmannboris improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT roynina improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT schefflerklaus improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT schneideranja improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT schottbjornh improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT spottkeannika improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT sprutheikej improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT webermarcandre improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT ertlwagnerbirgit improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT wagnermichael improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT wiltfangjens improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT jessenfrank improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT teipelstefanj improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease AT improving3dconvolutionalneuralnetworkcomprehensibilityviainteractivevisualizationofrelevancemapsevaluationinalzheimersdisease |