Cargando…
Application of Copper Iodide Nanoparticle-Doped Film and Fabric To Inactivate SARS-CoV-2 via the Virucidal Activity of Cuprous Ions (Cu(+))
As a result of the novel coronavirus disease 2019 pandemic, strengthening control measures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become an urgent global issue. In addition to antiviral therapy and vaccination strategies, applying available virucidal substances for...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612262/ https://www.ncbi.nlm.nih.gov/pubmed/34613751 http://dx.doi.org/10.1128/AEM.01824-21 |
_version_ | 1784603432690122752 |
---|---|
author | Takeda, Yohei Jamsransuren, Dulamjav Nagao, Tomokazu Fukui, Yoko Matsuda, Sachiko Ogawa, Haruko |
author_facet | Takeda, Yohei Jamsransuren, Dulamjav Nagao, Tomokazu Fukui, Yoko Matsuda, Sachiko Ogawa, Haruko |
author_sort | Takeda, Yohei |
collection | PubMed |
description | As a result of the novel coronavirus disease 2019 pandemic, strengthening control measures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become an urgent global issue. In addition to antiviral therapy and vaccination strategies, applying available virucidal substances for SARS-CoV-2 inactivation is also a target of research to prevent the spread of infection. Here, we evaluated the SARS-CoV-2 inactivation activity of a copper iodide (CuI) nanoparticle dispersion, which provides Cu(+) ions having high virucidal activity, and its mode of actions. In addition, the utility of CuI-doped film and fabric for SARS-CoV-2 inactivation was evaluated. The CuI dispersion exhibited time-dependent rapid virucidal activity. Analyses of the modes of action of CuI performed by Western blotting and real-time reverse transcription-PCR targeting viral proteins and the genome revealed that CuI treatment induced the destruction of these viral components. In this setting, the indirect action of CuI-derived reactive oxygen species contributed to the destruction of viral protein. Moreover, the CuI-doped film and fabric demonstrated rapid inactivation of the SARS-CoV-2 solution in which the viral titer was high. These findings indicated the utility of the CuI-doped film and fabric as anti-SARS-CoV-2 materials for the protection of high-touch environmental surfaces and surgical masks/protective clothes. Throughout this study, we demonstrated the effectiveness of CuI nanoparticles for inactivating SARS-CoV-2 and revealed a part of its virucidal mechanism of action. IMPORTANCE The COVID-19 pandemic has caused an unprecedented number of infections and deaths. As the spread of the disease is rapid and the risk of infection is severe, hand and environmental hygiene may contribute to suppressing contact transmission of SARS-CoV-2. Here, we evaluated the SARS-CoV-2 inactivation activity of CuI nanoparticles, which provide the Cu(+) ion as an antiviral agent, and we provided advanced findings of the virucidal mechanisms of action of Cu(+). Our results showed that the CuI dispersion, as well as CuI-doped film and fabric, rapidly inactivated SARS-CoV-2 with a high viral titer. We also demonstrated the CuI’s virucidal mechanisms of action, specifically the destruction of viral proteins and the genome by CuI treatment. Protein destruction largely depended on CuI-derived reactive oxygen species. This study provides novel information about the utility and mechanisms of action of promising virucidal material against SARS-CoV-2. |
format | Online Article Text |
id | pubmed-8612262 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-86122622021-12-13 Application of Copper Iodide Nanoparticle-Doped Film and Fabric To Inactivate SARS-CoV-2 via the Virucidal Activity of Cuprous Ions (Cu(+)) Takeda, Yohei Jamsransuren, Dulamjav Nagao, Tomokazu Fukui, Yoko Matsuda, Sachiko Ogawa, Haruko Appl Environ Microbiol Environmental Microbiology As a result of the novel coronavirus disease 2019 pandemic, strengthening control measures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become an urgent global issue. In addition to antiviral therapy and vaccination strategies, applying available virucidal substances for SARS-CoV-2 inactivation is also a target of research to prevent the spread of infection. Here, we evaluated the SARS-CoV-2 inactivation activity of a copper iodide (CuI) nanoparticle dispersion, which provides Cu(+) ions having high virucidal activity, and its mode of actions. In addition, the utility of CuI-doped film and fabric for SARS-CoV-2 inactivation was evaluated. The CuI dispersion exhibited time-dependent rapid virucidal activity. Analyses of the modes of action of CuI performed by Western blotting and real-time reverse transcription-PCR targeting viral proteins and the genome revealed that CuI treatment induced the destruction of these viral components. In this setting, the indirect action of CuI-derived reactive oxygen species contributed to the destruction of viral protein. Moreover, the CuI-doped film and fabric demonstrated rapid inactivation of the SARS-CoV-2 solution in which the viral titer was high. These findings indicated the utility of the CuI-doped film and fabric as anti-SARS-CoV-2 materials for the protection of high-touch environmental surfaces and surgical masks/protective clothes. Throughout this study, we demonstrated the effectiveness of CuI nanoparticles for inactivating SARS-CoV-2 and revealed a part of its virucidal mechanism of action. IMPORTANCE The COVID-19 pandemic has caused an unprecedented number of infections and deaths. As the spread of the disease is rapid and the risk of infection is severe, hand and environmental hygiene may contribute to suppressing contact transmission of SARS-CoV-2. Here, we evaluated the SARS-CoV-2 inactivation activity of CuI nanoparticles, which provide the Cu(+) ion as an antiviral agent, and we provided advanced findings of the virucidal mechanisms of action of Cu(+). Our results showed that the CuI dispersion, as well as CuI-doped film and fabric, rapidly inactivated SARS-CoV-2 with a high viral titer. We also demonstrated the CuI’s virucidal mechanisms of action, specifically the destruction of viral proteins and the genome by CuI treatment. Protein destruction largely depended on CuI-derived reactive oxygen species. This study provides novel information about the utility and mechanisms of action of promising virucidal material against SARS-CoV-2. American Society for Microbiology 2021-11-24 /pmc/articles/PMC8612262/ /pubmed/34613751 http://dx.doi.org/10.1128/AEM.01824-21 Text en Copyright © 2021 American Society for Microbiology. https://doi.org/10.1128/ASMCopyrightv2All Rights Reserved (https://doi.org/10.1128/ASMCopyrightv2) . https://doi.org/10.1128/ASMCopyrightv2This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Environmental Microbiology Takeda, Yohei Jamsransuren, Dulamjav Nagao, Tomokazu Fukui, Yoko Matsuda, Sachiko Ogawa, Haruko Application of Copper Iodide Nanoparticle-Doped Film and Fabric To Inactivate SARS-CoV-2 via the Virucidal Activity of Cuprous Ions (Cu(+)) |
title | Application of Copper Iodide Nanoparticle-Doped Film and Fabric To Inactivate SARS-CoV-2 via the Virucidal Activity of Cuprous Ions (Cu(+)) |
title_full | Application of Copper Iodide Nanoparticle-Doped Film and Fabric To Inactivate SARS-CoV-2 via the Virucidal Activity of Cuprous Ions (Cu(+)) |
title_fullStr | Application of Copper Iodide Nanoparticle-Doped Film and Fabric To Inactivate SARS-CoV-2 via the Virucidal Activity of Cuprous Ions (Cu(+)) |
title_full_unstemmed | Application of Copper Iodide Nanoparticle-Doped Film and Fabric To Inactivate SARS-CoV-2 via the Virucidal Activity of Cuprous Ions (Cu(+)) |
title_short | Application of Copper Iodide Nanoparticle-Doped Film and Fabric To Inactivate SARS-CoV-2 via the Virucidal Activity of Cuprous Ions (Cu(+)) |
title_sort | application of copper iodide nanoparticle-doped film and fabric to inactivate sars-cov-2 via the virucidal activity of cuprous ions (cu(+)) |
topic | Environmental Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612262/ https://www.ncbi.nlm.nih.gov/pubmed/34613751 http://dx.doi.org/10.1128/AEM.01824-21 |
work_keys_str_mv | AT takedayohei applicationofcopperiodidenanoparticledopedfilmandfabrictoinactivatesarscov2viathevirucidalactivityofcuprousionscu AT jamsransurendulamjav applicationofcopperiodidenanoparticledopedfilmandfabrictoinactivatesarscov2viathevirucidalactivityofcuprousionscu AT nagaotomokazu applicationofcopperiodidenanoparticledopedfilmandfabrictoinactivatesarscov2viathevirucidalactivityofcuprousionscu AT fukuiyoko applicationofcopperiodidenanoparticledopedfilmandfabrictoinactivatesarscov2viathevirucidalactivityofcuprousionscu AT matsudasachiko applicationofcopperiodidenanoparticledopedfilmandfabrictoinactivatesarscov2viathevirucidalactivityofcuprousionscu AT ogawaharuko applicationofcopperiodidenanoparticledopedfilmandfabrictoinactivatesarscov2viathevirucidalactivityofcuprousionscu |