Cargando…

The Evolution of Rumors on a Closed Social Networking Platform During COVID-19: Algorithm Development and Content Study

BACKGROUND: In 2020, the COVID-19 pandemic put the world in a crisis regarding both physical and psychological health. Simultaneously, a myriad of unverified information flowed on social media and online outlets. The situation was so severe that the World Health Organization identified it as an info...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Andrea W, Lan, Jo-Yu, Wang, Ming-Hung, Yu, Chihhao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612313/
https://www.ncbi.nlm.nih.gov/pubmed/34623954
http://dx.doi.org/10.2196/30467
Descripción
Sumario:BACKGROUND: In 2020, the COVID-19 pandemic put the world in a crisis regarding both physical and psychological health. Simultaneously, a myriad of unverified information flowed on social media and online outlets. The situation was so severe that the World Health Organization identified it as an infodemic in February 2020. OBJECTIVE: The aim of this study was to examine the propagation patterns and textual transformation of COVID-19–related rumors on a closed social media platform. METHODS: We obtained a data set of suspicious text messages collected on Taiwan’s most popular instant messaging platform, LINE, between January and July 2020. We proposed a classification-based clustering algorithm that could efficiently cluster messages into groups, with each group representing a rumor. For ease of understanding, a group is referred to as a “rumor group.” Messages in a rumor group could be identical or could have limited textual differences between them. Therefore, each message in a rumor group is a form of the rumor. RESULTS: A total of 936 rumor groups with at least 10 messages each were discovered among 114,124 text messages collected from LINE. Among 936 rumors, 396 (42.3%) were related to COVID-19. Of the 396 COVID-19–related rumors, 134 (33.8%) had been fact-checked by the International Fact-Checking Network–certified agencies in Taiwan and determined to be false or misleading. By studying the prevalence of simplified Chinese characters or phrases in the messages that originated in China, we found that COVID-19–related messages, compared to non–COVID-19–related messages, were more likely to have been written by non-Taiwanese users. The association was statistically significant, with P<.001, as determined by the chi-square independence test. The qualitative investigations of the three most popular COVID-19 rumors revealed that key authoritative figures, mostly medical personnel, were often misquoted in the messages. In addition, these rumors resurfaced multiple times after being fact-checked, usually preceded by major societal events or textual transformations. CONCLUSIONS: To fight the infodemic, it is crucial that we first understand why and how a rumor becomes popular. While social media has given rise to an unprecedented number of unverified rumors, it also provides a unique opportunity for us to study the propagation of rumors and their interactions with society. Therefore, we must put more effort into these areas.