Cargando…
Computational and data driven molecular material design assisted by low scaling quantum mechanics calculations and machine learning
Electronic structure methods based on quantum mechanics (QM) are widely employed in the computational predictions of the molecular properties and optoelectronic properties of molecular materials. The computational costs of these QM methods, ranging from density functional theory (DFT) or time-depend...
Autores principales: | Li, Wei, Ma, Haibo, Li, Shuhua, Ma, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612375/ https://www.ncbi.nlm.nih.gov/pubmed/34909141 http://dx.doi.org/10.1039/d1sc02574k |
Ejemplares similares
-
Machine learning-driven new material discovery
por: Cai, Jiazhen, et al.
Publicado: (2020) -
Computer aided chemical design: using quantum chemical calculations to predict properties of a series of halochromic guaiazulene derivatives
por: Woodward, Adam W., et al.
Publicado: (2016) -
Quantum algorithm for alchemical optimization in material design
por: Barkoutsos, Panagiotis Kl., et al.
Publicado: (2021) -
Materials by design at high pressures
por: Xu, Meiling, et al.
Publicado: (2021) -
Combining machine learning and quantum chemical calculations for high-throughput virtual screening of thermally activated delayed fluorescence molecular materials: the impact of selection strategy and structural mutations
por: Tu, Chunyun, et al.
Publicado: (2022)