Cargando…

Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring

While tools for monitoring in vivo electrophysiology have been extensively developed, neurochemical recording technologies remain limited. Nevertheless, chemical communication via neurotransmitters plays central roles in brain information processing. We developed implantable aptamer–field-effect tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Chuanzhen, Cheung, Kevin M., Huang, I-Wen, Yang, Hongyan, Nakatsuka, Nako, Liu, Wenfei, Cao, Yan, Man, Tianxing, Weiss, Paul S., Monbouquette, Harold G., Andrews, Anne M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612678/
https://www.ncbi.nlm.nih.gov/pubmed/34818033
http://dx.doi.org/10.1126/sciadv.abj7422
_version_ 1784603493630214144
author Zhao, Chuanzhen
Cheung, Kevin M.
Huang, I-Wen
Yang, Hongyan
Nakatsuka, Nako
Liu, Wenfei
Cao, Yan
Man, Tianxing
Weiss, Paul S.
Monbouquette, Harold G.
Andrews, Anne M.
author_facet Zhao, Chuanzhen
Cheung, Kevin M.
Huang, I-Wen
Yang, Hongyan
Nakatsuka, Nako
Liu, Wenfei
Cao, Yan
Man, Tianxing
Weiss, Paul S.
Monbouquette, Harold G.
Andrews, Anne M.
author_sort Zhao, Chuanzhen
collection PubMed
description While tools for monitoring in vivo electrophysiology have been extensively developed, neurochemical recording technologies remain limited. Nevertheless, chemical communication via neurotransmitters plays central roles in brain information processing. We developed implantable aptamer–field-effect transistor (FET) neuroprobes for monitoring neurotransmitters. Neuroprobes were fabricated using high-throughput microelectromechanical system (MEMS) technologies, where 150 probes with shanks of either 150- or 50-μm widths and thicknesses were fabricated on 4-inch Si wafers. Nanoscale FETs with ultrathin (~3 to 4 nm) In(2)O(3) semiconductor films were prepared using sol-gel processing. The In(2)O(3) surfaces were coupled with synthetic oligonucleotide receptors (aptamers) to recognize and to detect the neurotransmitter serotonin. Aptamer-FET neuroprobes enabled femtomolar serotonin detection limits in brain tissue with minimal biofouling. Stimulated serotonin release was detected in vivo. This study opens opportunities for integrated neural activity recordings at high spatiotemporal resolution by combining these aptamer-FET sensors with other types of Si-based implantable probes to advance our understanding of brain function.
format Online
Article
Text
id pubmed-8612678
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-86126782021-12-06 Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring Zhao, Chuanzhen Cheung, Kevin M. Huang, I-Wen Yang, Hongyan Nakatsuka, Nako Liu, Wenfei Cao, Yan Man, Tianxing Weiss, Paul S. Monbouquette, Harold G. Andrews, Anne M. Sci Adv Physical and Materials Sciences While tools for monitoring in vivo electrophysiology have been extensively developed, neurochemical recording technologies remain limited. Nevertheless, chemical communication via neurotransmitters plays central roles in brain information processing. We developed implantable aptamer–field-effect transistor (FET) neuroprobes for monitoring neurotransmitters. Neuroprobes were fabricated using high-throughput microelectromechanical system (MEMS) technologies, where 150 probes with shanks of either 150- or 50-μm widths and thicknesses were fabricated on 4-inch Si wafers. Nanoscale FETs with ultrathin (~3 to 4 nm) In(2)O(3) semiconductor films were prepared using sol-gel processing. The In(2)O(3) surfaces were coupled with synthetic oligonucleotide receptors (aptamers) to recognize and to detect the neurotransmitter serotonin. Aptamer-FET neuroprobes enabled femtomolar serotonin detection limits in brain tissue with minimal biofouling. Stimulated serotonin release was detected in vivo. This study opens opportunities for integrated neural activity recordings at high spatiotemporal resolution by combining these aptamer-FET sensors with other types of Si-based implantable probes to advance our understanding of brain function. American Association for the Advancement of Science 2021-11-24 /pmc/articles/PMC8612678/ /pubmed/34818033 http://dx.doi.org/10.1126/sciadv.abj7422 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Zhao, Chuanzhen
Cheung, Kevin M.
Huang, I-Wen
Yang, Hongyan
Nakatsuka, Nako
Liu, Wenfei
Cao, Yan
Man, Tianxing
Weiss, Paul S.
Monbouquette, Harold G.
Andrews, Anne M.
Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring
title Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring
title_full Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring
title_fullStr Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring
title_full_unstemmed Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring
title_short Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring
title_sort implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612678/
https://www.ncbi.nlm.nih.gov/pubmed/34818033
http://dx.doi.org/10.1126/sciadv.abj7422
work_keys_str_mv AT zhaochuanzhen implantableaptamerfieldeffecttransistorneuroprobesforinvivoneurotransmittermonitoring
AT cheungkevinm implantableaptamerfieldeffecttransistorneuroprobesforinvivoneurotransmittermonitoring
AT huangiwen implantableaptamerfieldeffecttransistorneuroprobesforinvivoneurotransmittermonitoring
AT yanghongyan implantableaptamerfieldeffecttransistorneuroprobesforinvivoneurotransmittermonitoring
AT nakatsukanako implantableaptamerfieldeffecttransistorneuroprobesforinvivoneurotransmittermonitoring
AT liuwenfei implantableaptamerfieldeffecttransistorneuroprobesforinvivoneurotransmittermonitoring
AT caoyan implantableaptamerfieldeffecttransistorneuroprobesforinvivoneurotransmittermonitoring
AT mantianxing implantableaptamerfieldeffecttransistorneuroprobesforinvivoneurotransmittermonitoring
AT weisspauls implantableaptamerfieldeffecttransistorneuroprobesforinvivoneurotransmittermonitoring
AT monbouquetteharoldg implantableaptamerfieldeffecttransistorneuroprobesforinvivoneurotransmittermonitoring
AT andrewsannem implantableaptamerfieldeffecttransistorneuroprobesforinvivoneurotransmittermonitoring