Cargando…

Predicting master transcription factors from pan-cancer expression data

Critical developmental “master transcription factors” (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription fac...

Descripción completa

Detalles Bibliográficos
Autores principales: Reddy, Jessica, Fonseca, Marcos A. S., Corona, Rosario I., Nameki, Robbin, Segato Dezem, Felipe, Klein, Isaac A., Chang, Heidi, Chaves-Moreira, Daniele, Afeyan, Lena K., Malta, Tathiane M., Lin, Xianzhi, Abbasi, Forough, Font-Tello, Alba, Sabedot, Thais, Cejas, Paloma, Rodríguez-Malavé, Norma, Seo, Ji-Heui, Lin, De-Chen, Matulonis, Ursula, Karlan, Beth Y., Gayther, Simon A., Pasaniuc, Bogdan, Gusev, Alexander, Noushmehr, Houtan, Long, Henry, Freedman, Matthew L., Drapkin, Ronny, Young, Richard A., Abraham, Brian J., Lawrenson, Kate
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612691/
https://www.ncbi.nlm.nih.gov/pubmed/34818047
http://dx.doi.org/10.1126/sciadv.abf6123
_version_ 1784603496719319040
author Reddy, Jessica
Fonseca, Marcos A. S.
Corona, Rosario I.
Nameki, Robbin
Segato Dezem, Felipe
Klein, Isaac A.
Chang, Heidi
Chaves-Moreira, Daniele
Afeyan, Lena K.
Malta, Tathiane M.
Lin, Xianzhi
Abbasi, Forough
Font-Tello, Alba
Sabedot, Thais
Cejas, Paloma
Rodríguez-Malavé, Norma
Seo, Ji-Heui
Lin, De-Chen
Matulonis, Ursula
Karlan, Beth Y.
Gayther, Simon A.
Pasaniuc, Bogdan
Gusev, Alexander
Noushmehr, Houtan
Long, Henry
Freedman, Matthew L.
Drapkin, Ronny
Young, Richard A.
Abraham, Brian J.
Lawrenson, Kate
author_facet Reddy, Jessica
Fonseca, Marcos A. S.
Corona, Rosario I.
Nameki, Robbin
Segato Dezem, Felipe
Klein, Isaac A.
Chang, Heidi
Chaves-Moreira, Daniele
Afeyan, Lena K.
Malta, Tathiane M.
Lin, Xianzhi
Abbasi, Forough
Font-Tello, Alba
Sabedot, Thais
Cejas, Paloma
Rodríguez-Malavé, Norma
Seo, Ji-Heui
Lin, De-Chen
Matulonis, Ursula
Karlan, Beth Y.
Gayther, Simon A.
Pasaniuc, Bogdan
Gusev, Alexander
Noushmehr, Houtan
Long, Henry
Freedman, Matthew L.
Drapkin, Ronny
Young, Richard A.
Abraham, Brian J.
Lawrenson, Kate
author_sort Reddy, Jessica
collection PubMed
description Critical developmental “master transcription factors” (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription factor Specificity) algorithm to prioritize candidate MTFs using pan-cancer RNA sequencing data. CaCTS identified candidate MTFs across 34 tumor types and 140 subtypes including predictions for cancer types/subtypes for which MTFs are unknown, including e.g. PAX8, SOX17, and MECOM as candidates in ovarian cancer (OvCa). In OvCa cells, consistent with known MTF properties, these factors are required for viability, lie proximal to superenhancers, co-occupy regulatory elements globally, co-bind loci encoding OvCa biomarkers, and are sensitive to pharmacologic inhibition of transcription. Our predictions of MTFs, especially for tumor types with limited understanding of transcriptional drivers, pave the way to therapeutic targeting of MTFs in a broad spectrum of cancers.
format Online
Article
Text
id pubmed-8612691
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-86126912021-12-06 Predicting master transcription factors from pan-cancer expression data Reddy, Jessica Fonseca, Marcos A. S. Corona, Rosario I. Nameki, Robbin Segato Dezem, Felipe Klein, Isaac A. Chang, Heidi Chaves-Moreira, Daniele Afeyan, Lena K. Malta, Tathiane M. Lin, Xianzhi Abbasi, Forough Font-Tello, Alba Sabedot, Thais Cejas, Paloma Rodríguez-Malavé, Norma Seo, Ji-Heui Lin, De-Chen Matulonis, Ursula Karlan, Beth Y. Gayther, Simon A. Pasaniuc, Bogdan Gusev, Alexander Noushmehr, Houtan Long, Henry Freedman, Matthew L. Drapkin, Ronny Young, Richard A. Abraham, Brian J. Lawrenson, Kate Sci Adv Biomedicine and Life Sciences Critical developmental “master transcription factors” (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription factor Specificity) algorithm to prioritize candidate MTFs using pan-cancer RNA sequencing data. CaCTS identified candidate MTFs across 34 tumor types and 140 subtypes including predictions for cancer types/subtypes for which MTFs are unknown, including e.g. PAX8, SOX17, and MECOM as candidates in ovarian cancer (OvCa). In OvCa cells, consistent with known MTF properties, these factors are required for viability, lie proximal to superenhancers, co-occupy regulatory elements globally, co-bind loci encoding OvCa biomarkers, and are sensitive to pharmacologic inhibition of transcription. Our predictions of MTFs, especially for tumor types with limited understanding of transcriptional drivers, pave the way to therapeutic targeting of MTFs in a broad spectrum of cancers. American Association for the Advancement of Science 2021-11-24 /pmc/articles/PMC8612691/ /pubmed/34818047 http://dx.doi.org/10.1126/sciadv.abf6123 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Reddy, Jessica
Fonseca, Marcos A. S.
Corona, Rosario I.
Nameki, Robbin
Segato Dezem, Felipe
Klein, Isaac A.
Chang, Heidi
Chaves-Moreira, Daniele
Afeyan, Lena K.
Malta, Tathiane M.
Lin, Xianzhi
Abbasi, Forough
Font-Tello, Alba
Sabedot, Thais
Cejas, Paloma
Rodríguez-Malavé, Norma
Seo, Ji-Heui
Lin, De-Chen
Matulonis, Ursula
Karlan, Beth Y.
Gayther, Simon A.
Pasaniuc, Bogdan
Gusev, Alexander
Noushmehr, Houtan
Long, Henry
Freedman, Matthew L.
Drapkin, Ronny
Young, Richard A.
Abraham, Brian J.
Lawrenson, Kate
Predicting master transcription factors from pan-cancer expression data
title Predicting master transcription factors from pan-cancer expression data
title_full Predicting master transcription factors from pan-cancer expression data
title_fullStr Predicting master transcription factors from pan-cancer expression data
title_full_unstemmed Predicting master transcription factors from pan-cancer expression data
title_short Predicting master transcription factors from pan-cancer expression data
title_sort predicting master transcription factors from pan-cancer expression data
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612691/
https://www.ncbi.nlm.nih.gov/pubmed/34818047
http://dx.doi.org/10.1126/sciadv.abf6123
work_keys_str_mv AT reddyjessica predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT fonsecamarcosas predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT coronarosarioi predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT namekirobbin predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT segatodezemfelipe predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT kleinisaaca predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT changheidi predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT chavesmoreiradaniele predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT afeyanlenak predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT maltatathianem predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT linxianzhi predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT abbasiforough predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT fonttelloalba predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT sabedotthais predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT cejaspaloma predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT rodriguezmalavenorma predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT seojiheui predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT lindechen predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT matulonisursula predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT karlanbethy predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT gaythersimona predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT pasaniucbogdan predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT gusevalexander predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT noushmehrhoutan predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT longhenry predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT freedmanmatthewl predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT drapkinronny predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT youngricharda predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT abrahambrianj predictingmastertranscriptionfactorsfrompancancerexpressiondata
AT lawrensonkate predictingmastertranscriptionfactorsfrompancancerexpressiondata