Cargando…
Predicting master transcription factors from pan-cancer expression data
Critical developmental “master transcription factors” (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription fac...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612691/ https://www.ncbi.nlm.nih.gov/pubmed/34818047 http://dx.doi.org/10.1126/sciadv.abf6123 |
_version_ | 1784603496719319040 |
---|---|
author | Reddy, Jessica Fonseca, Marcos A. S. Corona, Rosario I. Nameki, Robbin Segato Dezem, Felipe Klein, Isaac A. Chang, Heidi Chaves-Moreira, Daniele Afeyan, Lena K. Malta, Tathiane M. Lin, Xianzhi Abbasi, Forough Font-Tello, Alba Sabedot, Thais Cejas, Paloma Rodríguez-Malavé, Norma Seo, Ji-Heui Lin, De-Chen Matulonis, Ursula Karlan, Beth Y. Gayther, Simon A. Pasaniuc, Bogdan Gusev, Alexander Noushmehr, Houtan Long, Henry Freedman, Matthew L. Drapkin, Ronny Young, Richard A. Abraham, Brian J. Lawrenson, Kate |
author_facet | Reddy, Jessica Fonseca, Marcos A. S. Corona, Rosario I. Nameki, Robbin Segato Dezem, Felipe Klein, Isaac A. Chang, Heidi Chaves-Moreira, Daniele Afeyan, Lena K. Malta, Tathiane M. Lin, Xianzhi Abbasi, Forough Font-Tello, Alba Sabedot, Thais Cejas, Paloma Rodríguez-Malavé, Norma Seo, Ji-Heui Lin, De-Chen Matulonis, Ursula Karlan, Beth Y. Gayther, Simon A. Pasaniuc, Bogdan Gusev, Alexander Noushmehr, Houtan Long, Henry Freedman, Matthew L. Drapkin, Ronny Young, Richard A. Abraham, Brian J. Lawrenson, Kate |
author_sort | Reddy, Jessica |
collection | PubMed |
description | Critical developmental “master transcription factors” (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription factor Specificity) algorithm to prioritize candidate MTFs using pan-cancer RNA sequencing data. CaCTS identified candidate MTFs across 34 tumor types and 140 subtypes including predictions for cancer types/subtypes for which MTFs are unknown, including e.g. PAX8, SOX17, and MECOM as candidates in ovarian cancer (OvCa). In OvCa cells, consistent with known MTF properties, these factors are required for viability, lie proximal to superenhancers, co-occupy regulatory elements globally, co-bind loci encoding OvCa biomarkers, and are sensitive to pharmacologic inhibition of transcription. Our predictions of MTFs, especially for tumor types with limited understanding of transcriptional drivers, pave the way to therapeutic targeting of MTFs in a broad spectrum of cancers. |
format | Online Article Text |
id | pubmed-8612691 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-86126912021-12-06 Predicting master transcription factors from pan-cancer expression data Reddy, Jessica Fonseca, Marcos A. S. Corona, Rosario I. Nameki, Robbin Segato Dezem, Felipe Klein, Isaac A. Chang, Heidi Chaves-Moreira, Daniele Afeyan, Lena K. Malta, Tathiane M. Lin, Xianzhi Abbasi, Forough Font-Tello, Alba Sabedot, Thais Cejas, Paloma Rodríguez-Malavé, Norma Seo, Ji-Heui Lin, De-Chen Matulonis, Ursula Karlan, Beth Y. Gayther, Simon A. Pasaniuc, Bogdan Gusev, Alexander Noushmehr, Houtan Long, Henry Freedman, Matthew L. Drapkin, Ronny Young, Richard A. Abraham, Brian J. Lawrenson, Kate Sci Adv Biomedicine and Life Sciences Critical developmental “master transcription factors” (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription factor Specificity) algorithm to prioritize candidate MTFs using pan-cancer RNA sequencing data. CaCTS identified candidate MTFs across 34 tumor types and 140 subtypes including predictions for cancer types/subtypes for which MTFs are unknown, including e.g. PAX8, SOX17, and MECOM as candidates in ovarian cancer (OvCa). In OvCa cells, consistent with known MTF properties, these factors are required for viability, lie proximal to superenhancers, co-occupy regulatory elements globally, co-bind loci encoding OvCa biomarkers, and are sensitive to pharmacologic inhibition of transcription. Our predictions of MTFs, especially for tumor types with limited understanding of transcriptional drivers, pave the way to therapeutic targeting of MTFs in a broad spectrum of cancers. American Association for the Advancement of Science 2021-11-24 /pmc/articles/PMC8612691/ /pubmed/34818047 http://dx.doi.org/10.1126/sciadv.abf6123 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Biomedicine and Life Sciences Reddy, Jessica Fonseca, Marcos A. S. Corona, Rosario I. Nameki, Robbin Segato Dezem, Felipe Klein, Isaac A. Chang, Heidi Chaves-Moreira, Daniele Afeyan, Lena K. Malta, Tathiane M. Lin, Xianzhi Abbasi, Forough Font-Tello, Alba Sabedot, Thais Cejas, Paloma Rodríguez-Malavé, Norma Seo, Ji-Heui Lin, De-Chen Matulonis, Ursula Karlan, Beth Y. Gayther, Simon A. Pasaniuc, Bogdan Gusev, Alexander Noushmehr, Houtan Long, Henry Freedman, Matthew L. Drapkin, Ronny Young, Richard A. Abraham, Brian J. Lawrenson, Kate Predicting master transcription factors from pan-cancer expression data |
title | Predicting master transcription factors from pan-cancer expression
data |
title_full | Predicting master transcription factors from pan-cancer expression
data |
title_fullStr | Predicting master transcription factors from pan-cancer expression
data |
title_full_unstemmed | Predicting master transcription factors from pan-cancer expression
data |
title_short | Predicting master transcription factors from pan-cancer expression
data |
title_sort | predicting master transcription factors from pan-cancer expression
data |
topic | Biomedicine and Life Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612691/ https://www.ncbi.nlm.nih.gov/pubmed/34818047 http://dx.doi.org/10.1126/sciadv.abf6123 |
work_keys_str_mv | AT reddyjessica predictingmastertranscriptionfactorsfrompancancerexpressiondata AT fonsecamarcosas predictingmastertranscriptionfactorsfrompancancerexpressiondata AT coronarosarioi predictingmastertranscriptionfactorsfrompancancerexpressiondata AT namekirobbin predictingmastertranscriptionfactorsfrompancancerexpressiondata AT segatodezemfelipe predictingmastertranscriptionfactorsfrompancancerexpressiondata AT kleinisaaca predictingmastertranscriptionfactorsfrompancancerexpressiondata AT changheidi predictingmastertranscriptionfactorsfrompancancerexpressiondata AT chavesmoreiradaniele predictingmastertranscriptionfactorsfrompancancerexpressiondata AT afeyanlenak predictingmastertranscriptionfactorsfrompancancerexpressiondata AT maltatathianem predictingmastertranscriptionfactorsfrompancancerexpressiondata AT linxianzhi predictingmastertranscriptionfactorsfrompancancerexpressiondata AT abbasiforough predictingmastertranscriptionfactorsfrompancancerexpressiondata AT fonttelloalba predictingmastertranscriptionfactorsfrompancancerexpressiondata AT sabedotthais predictingmastertranscriptionfactorsfrompancancerexpressiondata AT cejaspaloma predictingmastertranscriptionfactorsfrompancancerexpressiondata AT rodriguezmalavenorma predictingmastertranscriptionfactorsfrompancancerexpressiondata AT seojiheui predictingmastertranscriptionfactorsfrompancancerexpressiondata AT lindechen predictingmastertranscriptionfactorsfrompancancerexpressiondata AT matulonisursula predictingmastertranscriptionfactorsfrompancancerexpressiondata AT karlanbethy predictingmastertranscriptionfactorsfrompancancerexpressiondata AT gaythersimona predictingmastertranscriptionfactorsfrompancancerexpressiondata AT pasaniucbogdan predictingmastertranscriptionfactorsfrompancancerexpressiondata AT gusevalexander predictingmastertranscriptionfactorsfrompancancerexpressiondata AT noushmehrhoutan predictingmastertranscriptionfactorsfrompancancerexpressiondata AT longhenry predictingmastertranscriptionfactorsfrompancancerexpressiondata AT freedmanmatthewl predictingmastertranscriptionfactorsfrompancancerexpressiondata AT drapkinronny predictingmastertranscriptionfactorsfrompancancerexpressiondata AT youngricharda predictingmastertranscriptionfactorsfrompancancerexpressiondata AT abrahambrianj predictingmastertranscriptionfactorsfrompancancerexpressiondata AT lawrensonkate predictingmastertranscriptionfactorsfrompancancerexpressiondata |