Cargando…

Cell-type specialization is encoded by specific chromatin topologies

The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function(1–3). Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescen...

Descripción completa

Detalles Bibliográficos
Autores principales: Winick-Ng, Warren, Kukalev, Alexander, Harabula, Izabela, Zea-Redondo, Luna, Szabó, Dominik, Meijer, Mandy, Serebreni, Leonid, Zhang, Yingnan, Bianco, Simona, Chiariello, Andrea M., Irastorza-Azcarate, Ibai, Thieme, Christoph J., Sparks, Thomas M., Carvalho, Sílvia, Fiorillo, Luca, Musella, Francesco, Irani, Ehsan, Torlai Triglia, Elena, Kolodziejczyk, Aleksandra A., Abentung, Andreas, Apostolova, Galina, Paul, Eleanor J., Franke, Vedran, Kempfer, Rieke, Akalin, Altuna, Teichmann, Sarah A., Dechant, Georg, Ungless, Mark A., Nicodemi, Mario, Welch, Lonnie, Castelo-Branco, Gonçalo, Pombo, Ana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612935/
https://www.ncbi.nlm.nih.gov/pubmed/34789882
http://dx.doi.org/10.1038/s41586-021-04081-2
_version_ 1784603543605346304
author Winick-Ng, Warren
Kukalev, Alexander
Harabula, Izabela
Zea-Redondo, Luna
Szabó, Dominik
Meijer, Mandy
Serebreni, Leonid
Zhang, Yingnan
Bianco, Simona
Chiariello, Andrea M.
Irastorza-Azcarate, Ibai
Thieme, Christoph J.
Sparks, Thomas M.
Carvalho, Sílvia
Fiorillo, Luca
Musella, Francesco
Irani, Ehsan
Torlai Triglia, Elena
Kolodziejczyk, Aleksandra A.
Abentung, Andreas
Apostolova, Galina
Paul, Eleanor J.
Franke, Vedran
Kempfer, Rieke
Akalin, Altuna
Teichmann, Sarah A.
Dechant, Georg
Ungless, Mark A.
Nicodemi, Mario
Welch, Lonnie
Castelo-Branco, Gonçalo
Pombo, Ana
author_facet Winick-Ng, Warren
Kukalev, Alexander
Harabula, Izabela
Zea-Redondo, Luna
Szabó, Dominik
Meijer, Mandy
Serebreni, Leonid
Zhang, Yingnan
Bianco, Simona
Chiariello, Andrea M.
Irastorza-Azcarate, Ibai
Thieme, Christoph J.
Sparks, Thomas M.
Carvalho, Sílvia
Fiorillo, Luca
Musella, Francesco
Irani, Ehsan
Torlai Triglia, Elena
Kolodziejczyk, Aleksandra A.
Abentung, Andreas
Apostolova, Galina
Paul, Eleanor J.
Franke, Vedran
Kempfer, Rieke
Akalin, Altuna
Teichmann, Sarah A.
Dechant, Georg
Ungless, Mark A.
Nicodemi, Mario
Welch, Lonnie
Castelo-Branco, Gonçalo
Pombo, Ana
author_sort Winick-Ng, Warren
collection PubMed
description The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function(1–3). Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi(4–6). However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation(7), are invisible with such approaches(8). Here we developed immunoGAM, an extension of genome architecture mapping (GAM)(2,9), to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation(2,10). We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive ‘melting’ of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions.
format Online
Article
Text
id pubmed-8612935
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-86129352021-12-10 Cell-type specialization is encoded by specific chromatin topologies Winick-Ng, Warren Kukalev, Alexander Harabula, Izabela Zea-Redondo, Luna Szabó, Dominik Meijer, Mandy Serebreni, Leonid Zhang, Yingnan Bianco, Simona Chiariello, Andrea M. Irastorza-Azcarate, Ibai Thieme, Christoph J. Sparks, Thomas M. Carvalho, Sílvia Fiorillo, Luca Musella, Francesco Irani, Ehsan Torlai Triglia, Elena Kolodziejczyk, Aleksandra A. Abentung, Andreas Apostolova, Galina Paul, Eleanor J. Franke, Vedran Kempfer, Rieke Akalin, Altuna Teichmann, Sarah A. Dechant, Georg Ungless, Mark A. Nicodemi, Mario Welch, Lonnie Castelo-Branco, Gonçalo Pombo, Ana Nature Article The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function(1–3). Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi(4–6). However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation(7), are invisible with such approaches(8). Here we developed immunoGAM, an extension of genome architecture mapping (GAM)(2,9), to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation(2,10). We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive ‘melting’ of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions. Nature Publishing Group UK 2021-11-17 2021 /pmc/articles/PMC8612935/ /pubmed/34789882 http://dx.doi.org/10.1038/s41586-021-04081-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Winick-Ng, Warren
Kukalev, Alexander
Harabula, Izabela
Zea-Redondo, Luna
Szabó, Dominik
Meijer, Mandy
Serebreni, Leonid
Zhang, Yingnan
Bianco, Simona
Chiariello, Andrea M.
Irastorza-Azcarate, Ibai
Thieme, Christoph J.
Sparks, Thomas M.
Carvalho, Sílvia
Fiorillo, Luca
Musella, Francesco
Irani, Ehsan
Torlai Triglia, Elena
Kolodziejczyk, Aleksandra A.
Abentung, Andreas
Apostolova, Galina
Paul, Eleanor J.
Franke, Vedran
Kempfer, Rieke
Akalin, Altuna
Teichmann, Sarah A.
Dechant, Georg
Ungless, Mark A.
Nicodemi, Mario
Welch, Lonnie
Castelo-Branco, Gonçalo
Pombo, Ana
Cell-type specialization is encoded by specific chromatin topologies
title Cell-type specialization is encoded by specific chromatin topologies
title_full Cell-type specialization is encoded by specific chromatin topologies
title_fullStr Cell-type specialization is encoded by specific chromatin topologies
title_full_unstemmed Cell-type specialization is encoded by specific chromatin topologies
title_short Cell-type specialization is encoded by specific chromatin topologies
title_sort cell-type specialization is encoded by specific chromatin topologies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612935/
https://www.ncbi.nlm.nih.gov/pubmed/34789882
http://dx.doi.org/10.1038/s41586-021-04081-2
work_keys_str_mv AT winickngwarren celltypespecializationisencodedbyspecificchromatintopologies
AT kukalevalexander celltypespecializationisencodedbyspecificchromatintopologies
AT harabulaizabela celltypespecializationisencodedbyspecificchromatintopologies
AT zearedondoluna celltypespecializationisencodedbyspecificchromatintopologies
AT szabodominik celltypespecializationisencodedbyspecificchromatintopologies
AT meijermandy celltypespecializationisencodedbyspecificchromatintopologies
AT serebrenileonid celltypespecializationisencodedbyspecificchromatintopologies
AT zhangyingnan celltypespecializationisencodedbyspecificchromatintopologies
AT biancosimona celltypespecializationisencodedbyspecificchromatintopologies
AT chiarielloandream celltypespecializationisencodedbyspecificchromatintopologies
AT irastorzaazcarateibai celltypespecializationisencodedbyspecificchromatintopologies
AT thiemechristophj celltypespecializationisencodedbyspecificchromatintopologies
AT sparksthomasm celltypespecializationisencodedbyspecificchromatintopologies
AT carvalhosilvia celltypespecializationisencodedbyspecificchromatintopologies
AT fiorilloluca celltypespecializationisencodedbyspecificchromatintopologies
AT musellafrancesco celltypespecializationisencodedbyspecificchromatintopologies
AT iraniehsan celltypespecializationisencodedbyspecificchromatintopologies
AT torlaitrigliaelena celltypespecializationisencodedbyspecificchromatintopologies
AT kolodziejczykaleksandraa celltypespecializationisencodedbyspecificchromatintopologies
AT abentungandreas celltypespecializationisencodedbyspecificchromatintopologies
AT apostolovagalina celltypespecializationisencodedbyspecificchromatintopologies
AT pauleleanorj celltypespecializationisencodedbyspecificchromatintopologies
AT frankevedran celltypespecializationisencodedbyspecificchromatintopologies
AT kempferrieke celltypespecializationisencodedbyspecificchromatintopologies
AT akalinaltuna celltypespecializationisencodedbyspecificchromatintopologies
AT teichmannsaraha celltypespecializationisencodedbyspecificchromatintopologies
AT dechantgeorg celltypespecializationisencodedbyspecificchromatintopologies
AT unglessmarka celltypespecializationisencodedbyspecificchromatintopologies
AT nicodemimario celltypespecializationisencodedbyspecificchromatintopologies
AT welchlonnie celltypespecializationisencodedbyspecificchromatintopologies
AT castelobrancogoncalo celltypespecializationisencodedbyspecificchromatintopologies
AT pomboana celltypespecializationisencodedbyspecificchromatintopologies