Cargando…
Cell-type specialization is encoded by specific chromatin topologies
The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function(1–3). Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescen...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612935/ https://www.ncbi.nlm.nih.gov/pubmed/34789882 http://dx.doi.org/10.1038/s41586-021-04081-2 |
_version_ | 1784603543605346304 |
---|---|
author | Winick-Ng, Warren Kukalev, Alexander Harabula, Izabela Zea-Redondo, Luna Szabó, Dominik Meijer, Mandy Serebreni, Leonid Zhang, Yingnan Bianco, Simona Chiariello, Andrea M. Irastorza-Azcarate, Ibai Thieme, Christoph J. Sparks, Thomas M. Carvalho, Sílvia Fiorillo, Luca Musella, Francesco Irani, Ehsan Torlai Triglia, Elena Kolodziejczyk, Aleksandra A. Abentung, Andreas Apostolova, Galina Paul, Eleanor J. Franke, Vedran Kempfer, Rieke Akalin, Altuna Teichmann, Sarah A. Dechant, Georg Ungless, Mark A. Nicodemi, Mario Welch, Lonnie Castelo-Branco, Gonçalo Pombo, Ana |
author_facet | Winick-Ng, Warren Kukalev, Alexander Harabula, Izabela Zea-Redondo, Luna Szabó, Dominik Meijer, Mandy Serebreni, Leonid Zhang, Yingnan Bianco, Simona Chiariello, Andrea M. Irastorza-Azcarate, Ibai Thieme, Christoph J. Sparks, Thomas M. Carvalho, Sílvia Fiorillo, Luca Musella, Francesco Irani, Ehsan Torlai Triglia, Elena Kolodziejczyk, Aleksandra A. Abentung, Andreas Apostolova, Galina Paul, Eleanor J. Franke, Vedran Kempfer, Rieke Akalin, Altuna Teichmann, Sarah A. Dechant, Georg Ungless, Mark A. Nicodemi, Mario Welch, Lonnie Castelo-Branco, Gonçalo Pombo, Ana |
author_sort | Winick-Ng, Warren |
collection | PubMed |
description | The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function(1–3). Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi(4–6). However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation(7), are invisible with such approaches(8). Here we developed immunoGAM, an extension of genome architecture mapping (GAM)(2,9), to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation(2,10). We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive ‘melting’ of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions. |
format | Online Article Text |
id | pubmed-8612935 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-86129352021-12-10 Cell-type specialization is encoded by specific chromatin topologies Winick-Ng, Warren Kukalev, Alexander Harabula, Izabela Zea-Redondo, Luna Szabó, Dominik Meijer, Mandy Serebreni, Leonid Zhang, Yingnan Bianco, Simona Chiariello, Andrea M. Irastorza-Azcarate, Ibai Thieme, Christoph J. Sparks, Thomas M. Carvalho, Sílvia Fiorillo, Luca Musella, Francesco Irani, Ehsan Torlai Triglia, Elena Kolodziejczyk, Aleksandra A. Abentung, Andreas Apostolova, Galina Paul, Eleanor J. Franke, Vedran Kempfer, Rieke Akalin, Altuna Teichmann, Sarah A. Dechant, Georg Ungless, Mark A. Nicodemi, Mario Welch, Lonnie Castelo-Branco, Gonçalo Pombo, Ana Nature Article The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function(1–3). Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi(4–6). However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation(7), are invisible with such approaches(8). Here we developed immunoGAM, an extension of genome architecture mapping (GAM)(2,9), to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation(2,10). We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive ‘melting’ of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions. Nature Publishing Group UK 2021-11-17 2021 /pmc/articles/PMC8612935/ /pubmed/34789882 http://dx.doi.org/10.1038/s41586-021-04081-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Winick-Ng, Warren Kukalev, Alexander Harabula, Izabela Zea-Redondo, Luna Szabó, Dominik Meijer, Mandy Serebreni, Leonid Zhang, Yingnan Bianco, Simona Chiariello, Andrea M. Irastorza-Azcarate, Ibai Thieme, Christoph J. Sparks, Thomas M. Carvalho, Sílvia Fiorillo, Luca Musella, Francesco Irani, Ehsan Torlai Triglia, Elena Kolodziejczyk, Aleksandra A. Abentung, Andreas Apostolova, Galina Paul, Eleanor J. Franke, Vedran Kempfer, Rieke Akalin, Altuna Teichmann, Sarah A. Dechant, Georg Ungless, Mark A. Nicodemi, Mario Welch, Lonnie Castelo-Branco, Gonçalo Pombo, Ana Cell-type specialization is encoded by specific chromatin topologies |
title | Cell-type specialization is encoded by specific chromatin topologies |
title_full | Cell-type specialization is encoded by specific chromatin topologies |
title_fullStr | Cell-type specialization is encoded by specific chromatin topologies |
title_full_unstemmed | Cell-type specialization is encoded by specific chromatin topologies |
title_short | Cell-type specialization is encoded by specific chromatin topologies |
title_sort | cell-type specialization is encoded by specific chromatin topologies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612935/ https://www.ncbi.nlm.nih.gov/pubmed/34789882 http://dx.doi.org/10.1038/s41586-021-04081-2 |
work_keys_str_mv | AT winickngwarren celltypespecializationisencodedbyspecificchromatintopologies AT kukalevalexander celltypespecializationisencodedbyspecificchromatintopologies AT harabulaizabela celltypespecializationisencodedbyspecificchromatintopologies AT zearedondoluna celltypespecializationisencodedbyspecificchromatintopologies AT szabodominik celltypespecializationisencodedbyspecificchromatintopologies AT meijermandy celltypespecializationisencodedbyspecificchromatintopologies AT serebrenileonid celltypespecializationisencodedbyspecificchromatintopologies AT zhangyingnan celltypespecializationisencodedbyspecificchromatintopologies AT biancosimona celltypespecializationisencodedbyspecificchromatintopologies AT chiarielloandream celltypespecializationisencodedbyspecificchromatintopologies AT irastorzaazcarateibai celltypespecializationisencodedbyspecificchromatintopologies AT thiemechristophj celltypespecializationisencodedbyspecificchromatintopologies AT sparksthomasm celltypespecializationisencodedbyspecificchromatintopologies AT carvalhosilvia celltypespecializationisencodedbyspecificchromatintopologies AT fiorilloluca celltypespecializationisencodedbyspecificchromatintopologies AT musellafrancesco celltypespecializationisencodedbyspecificchromatintopologies AT iraniehsan celltypespecializationisencodedbyspecificchromatintopologies AT torlaitrigliaelena celltypespecializationisencodedbyspecificchromatintopologies AT kolodziejczykaleksandraa celltypespecializationisencodedbyspecificchromatintopologies AT abentungandreas celltypespecializationisencodedbyspecificchromatintopologies AT apostolovagalina celltypespecializationisencodedbyspecificchromatintopologies AT pauleleanorj celltypespecializationisencodedbyspecificchromatintopologies AT frankevedran celltypespecializationisencodedbyspecificchromatintopologies AT kempferrieke celltypespecializationisencodedbyspecificchromatintopologies AT akalinaltuna celltypespecializationisencodedbyspecificchromatintopologies AT teichmannsaraha celltypespecializationisencodedbyspecificchromatintopologies AT dechantgeorg celltypespecializationisencodedbyspecificchromatintopologies AT unglessmarka celltypespecializationisencodedbyspecificchromatintopologies AT nicodemimario celltypespecializationisencodedbyspecificchromatintopologies AT welchlonnie celltypespecializationisencodedbyspecificchromatintopologies AT castelobrancogoncalo celltypespecializationisencodedbyspecificchromatintopologies AT pomboana celltypespecializationisencodedbyspecificchromatintopologies |