Cargando…
Eye movement analysis with hidden Markov models (EMHMM) with co-clustering
The eye movement analysis with hidden Markov models (EMHMM) method provides quantitative measures of individual differences in eye-movement pattern. However, it is limited to tasks where stimuli have the same feature layout (e.g., faces). Here we proposed to combine EMHMM with the data mining techni...
Autores principales: | Hsiao, Janet H., Lan, Hui, Zheng, Yueyuan, Chan, Antoni B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613150/ https://www.ncbi.nlm.nih.gov/pubmed/33929699 http://dx.doi.org/10.3758/s13428-021-01541-5 |
Ejemplares similares
-
Understanding the role of eye movement consistency in face recognition and autism through integrating deep neural networks and hidden Markov models
por: Hsiao, Janet H., et al.
Publicado: (2022) -
Author Correction: Understanding the role of eye movement consistency in face recognition and autism through integrating deep neural networks and hidden Markov models
por: Hsiao, Janet H., et al.
Publicado: (2023) -
Scanpath modeling and classification with hidden Markov models
por: Coutrot, Antoine, et al.
Publicado: (2017) -
When Eyes Wander Around: Mind-Wandering as Revealed by Eye Movement Analysis with Hidden Markov Models
por: Lee, Hsing-Hao, et al.
Publicado: (2021) -
Characterising Eye Movement Events with an Unsupervised Hidden Markov Model
por: Lüken, Malte, et al.
Publicado: (2022)