Cargando…
Segmentation of infected region in CT images of COVID-19 patients based on QC-HC U-net
Since the outbreak of COVID-19 in 2019, the rapid spread of the epidemic has brought huge challenges to medical institutions. If the pathological region in the COVID-19 CT image can be automatically segmented, it will help doctors quickly determine the patient’s infection, thereby speeding up the di...
Autores principales: | Zhang, Qin, Ren, Xiaoqiang, Wei, Benzheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613253/ https://www.ncbi.nlm.nih.gov/pubmed/34819524 http://dx.doi.org/10.1038/s41598-021-01502-0 |
Ejemplares similares
-
COVID-19 Lung CT image segmentation using localization and enhancement methods with U-Net
por: Ilhan, Ahmet, et al.
Publicado: (2023) -
COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet
por: Saood, Adnan, et al.
Publicado: (2021) -
A Few-Shot U-Net Deep Learning Model for COVID-19 Infected Area Segmentation in CT Images
por: Voulodimos, Athanasios, et al.
Publicado: (2021) -
U-Net combined with multi-scale attention mechanism for liver segmentation in CT images
por: Wu, Jiawei, et al.
Publicado: (2021) -
RDCTrans U-Net: A Hybrid Variable Architecture for Liver CT Image Segmentation
por: Li, Lingyun, et al.
Publicado: (2022)