Cargando…
Multipole resonance and Vernier effect in compact and flexible plasmonic structures
Spoof surface plasmons in corrugated metal surfaces allow tight field confinement and guiding even at low frequencies and are promising for compact microwave photonic devices. Here, we use metal-ink printing on flexible substrates to construct compact spoof plasmon resonators. We clearly observe mul...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613286/ https://www.ncbi.nlm.nih.gov/pubmed/34819584 http://dx.doi.org/10.1038/s41598-021-02333-9 |
Sumario: | Spoof surface plasmons in corrugated metal surfaces allow tight field confinement and guiding even at low frequencies and are promising for compact microwave photonic devices. Here, we use metal-ink printing on flexible substrates to construct compact spoof plasmon resonators. We clearly observe multipole resonances in the microwave frequencies and demonstrate that they are still maintained even under significant bending. Moreover, by combining two resonators of slightly different sizes, we demonstrate spectral filtering via the Vernier effect. We selectively address a target higher-order resonance while suppressing the other modes. Finally, we investigate the index-sensing capability of printed plasmonic resonators. In the Vernier structure, we can control the resonance amplitude and frequency by adjusting a resonance overlap between two coupled resonators. The transmission amplitude can be maximized at a target refractive index, and this can provide more functionalities and increased design flexibility. The metal-ink printing of microwave photonic structures can be applied to various flexible devices. Therefore, we expect that the compact, flexible plasmonic structures demonstrated in this study may be useful for highly functional elements that can enable tight field confinement and manipulation. |
---|