Cargando…
Measuring the bias of incorrect application of feature selection when using cross-validation in radiomics
BACKGROUND: Many studies in radiomics are using feature selection methods to identify the most predictive features. At the same time, they employ cross-validation to estimate the performance of the developed models. However, if the feature selection is performed before the cross-validation, data lea...
Autor principal: | Demircioğlu, Aydin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613324/ https://www.ncbi.nlm.nih.gov/pubmed/34817740 http://dx.doi.org/10.1186/s13244-021-01115-1 |
Ejemplares similares
-
Evaluation of the dependence of radiomic features on the machine learning model
por: Demircioğlu, Aydin
Publicado: (2022) -
Deep Features from Pretrained Networks Do Not Outperform Hand-Crafted Features in Radiomics
por: Demircioğlu, Aydin
Publicado: (2023) -
Predictive performance of radiomic models based on features extracted from pretrained deep networks
por: Demircioğlu, Aydin
Publicado: (2022) -
The effect of preprocessing filters on predictive performance in radiomics
por: Demircioğlu, Aydin
Publicado: (2022) -
Bias in error estimation when using cross-validation for model selection
por: Varma, Sudhir, et al.
Publicado: (2006)